Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500156

RESUMEN

We present studies on the microwave properties, electrical resistivity, and low-frequency (10 Hz-20 kHz) noise characteristics in the temperature range of 78 K to 380 K of composite materials made from bisphenol A-based epoxy resin and carbon fiber felts. Two types of carbon fibers were used, derived from polyacrylonitrile or regenerated cellulose. We show that these structures are suitable for electromagnetic shielding applications, especially in the direction parallel to the carbon fibers. The low-frequency voltage fluctuations observed in these materials are of the 1/fα, and the noise intensity is proportional to the square of the voltage. The characteristics of the investigated materials show an instability in the temperature range from 307 K to 332 K. This effect is followed by an increase in resistivity and noise intensity, but it does not change the character of the noise, and this instability vanishes after a few repeated heating and cooling cycles.

2.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805067

RESUMEN

Polymer matrix composites filled with carbon nanoparticles are promising materials for many applications, but their properties strongly depend on the particle features, concentration and distribution within the matrix. Here we present a study of the electrical resistivity and the low-frequency voltage fluctuation of composites based on epoxy resin filled with onion-like carbon (OLC) of different sizes (40-250 nm) above the percolation threshold, which should clarify the electrical transport characteristics in these materials. Electrical measurements were performed in the temperature range of 78 to 380 K, and voltage noise analysis was carried out from 10 Hz to 20 kHz. At low temperatures (below 250 K), thermally activated tunneling, variable-range hopping and generation-recombination of charge carriers take place. Above 250 K, the rapid expansion of the matrix with the temperature increases the resistivity, but above ~330 K, the conductivity of the matrix becomes significant. Quasi one-dimensional electrical transport is observed in composites with the smallest particles (40 nm), while in composites with the largest particles (220-250 nm), the dimensionality of the electrical transport is higher. The temperature dependence of the electrical conductivity of composites with smaller particles is more sensitive to matrix expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...