Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 12: e128431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171079

RESUMEN

Background: Discoveries of new species often depend on one or a few specimens, leading to delays as researchers wait for additional context, sometimes for decades. There is currently little professional incentive for a single expert to publish a stand-alone species description. Additionally, while many journals accept taxonomic descriptions, even specialist journals expect insights beyond the descriptive work itself. The combination of these factors exacerbates the issue that only a small fraction of marine species are known and new discoveries are described at a slow pace, while they face increasing threats from accelerating global change. To tackle this challenge, this first compilation of Ocean Species Discoveries (OSD) presents a new collaborative framework to accelerate the description and naming of marine invertebrate taxa that can be extended across all phyla. Through a mode of publication that can be speedy, taxonomy-focused and generate higher citation rates, OSD aims to create an attractive home for single species descriptions. This Senckenberg Ocean Species Alliance (SOSA) approach emphasises thorough, but compact species descriptions and diagnoses, with supporting illustrations and with molecular data when available. Even basic species descriptions carry key data for distributions and ecological interactions (e.g., host-parasite relationships) besides universally valid species names; these are essential for downstream uses, such as conservation assessments and communicating biodiversity to the broader public. New information: This paper presents thirteen marine invertebrate taxa, comprising one new genus, eleven new species and one re-description and reinstatement, covering wide taxonomic, geographic, bathymetric and ecological ranges. The taxa addressed herein span three phyla (Mollusca, Arthropoda, Echinodermata), five classes, eight orders and twelve families. Apart from the new genus, an updated generic diagnosis is provided for four other genera. The newly-described species of the phylum Mollusca are Placiphorellamethanophila Voncina, sp. nov. (Polyplacophora, Mopaliidae), Lepetodrilusmarianae Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Lepetodrilidae), Shinkailepasgigas Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Phenacolepadidae) and Lyonsiellaillaesa Machado & Sigwart, sp. nov. (Bivalvia, Lyonsiellidae). The new taxa of the phylum Arthropoda are all members of the subphylum Crustacea: Lepechinellanaces Lörz & Engel, sp. nov. (Amphipoda, Lepechinellidae), Cuniculomaeragrata Tandberg & Jazdzewska, gen. et sp. nov. (Amphipoda, Maeridae), Pseudionellapumulaensis Williams & Landschoff, sp. nov. (Isopoda, Bopyridae), Mastigoniscusminimus Wenz, Knauber & Riehl, sp. nov. (Isopoda, Haploniscidae), Macrostylispapandreas Jonannsen, Riehl & Brandt, sp. nov. (Isopoda, Macrostylidae), Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. (Isopoda, Nannoniscidae) and Apseudopsisdaria Esquete & Tato, sp. nov. (Tanaidacea, Apseudidae). In the phylum Echinodermata, the reinstated species is Psychropotesbuglossa E. Perrier, 1886 (Holothuroidea, Psychropotidae).The study areas span the North and Central Atlantic Ocean, the Indian Ocean and the North, East and West Pacific Ocean and depths from 5.2 m to 7081 m. Specimens of eleven free-living and one parasite species were collected from habitats ranging from an estuary to deep-sea trenches. The species were illustrated with photographs, line drawings, micro-computed tomography, confocal laser scanning microscopy and scanning electron microscopy images. Molecular data are included for nine species and four species include a molecular diagnosis in addition to their morphological diagnosis.The five new geographic and bathymetric distribution records comprise Lepechinellanaces Lörz & Engel, sp. nov., Cuniculomaeragrata Tandberg & Jazdzewska, sp. nov., Pseudionellapumulaensis Williams & Landschoff, sp. nov., Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. and Psychropotesbuglossa E. Perrier, 1886, with the novelty spanning from the species to the family level. The new parasite record is Pseudionellapumulaensis Williams & Landschoff, sp. nov., found in association with the hermit crab Pagurusfraserorum Landschoff & Komai, 2018.

2.
Sci Adv ; 9(34): eadg8364, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37611098

RESUMEN

Phagocytosis is one of the methods used to acquire symbiotic bacteria to establish intracellular symbiosis. A deep-sea mussel, Bathymodiolus japonicus, acquires its symbiont from the environment by phagocytosis of gill epithelial cells and receives nutrients from them. However, the manner by which mussels retain the symbiont without phagosome digestion remains unknown. Here, we show that controlling the mechanistic target of rapamycin complex 1 (mTORC1) in mussels leads to retaining symbionts in gill cells. The symbiont is essential for the host mussel nutrition; however, depleting the symbiont's energy source triggers the phagosome digestion of symbionts. Meanwhile, the inhibition of mTORC1 by rapamycin prevented the digestion of the resident symbionts and of the engulfed exogenous dead symbionts in gill cells. This indicates that mTORC1 promotes phagosome digestion of symbionts under reduced nutrient supply from the symbiont. The regulation mechanism of phagosome digestion by mTORC1 through nutrient signaling with symbionts is key for maintaining animal-microbe intracellular nutritional symbiosis.


Asunto(s)
Bivalvos , Simbiosis , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina , Fagosomas , Bacterias , Digestión
3.
Artículo en Inglés | MEDLINE | ID: mdl-36862579

RESUMEN

Cells from strain GE09T, isolated from an artificially immersed nanofibrous cellulose plate in the deep sea, were Gram-stain-negative, motile, aerobic cells that could grow with cellulose as their only nutrient. Strain GE09T was placed among members of Cellvibrionaceae, in the Gammaproteobacteria, with Marinagarivorans algicola Z1T, a marine degrader of agar, as the closest relative (97.4 % similarity). The average nucleotide identity and digital DNA-DNA hybridization values between GE09T and M. algicola Z1T were 72.5 and 21.2 %, respectively. Strain GE09T degraded cellulose, xylan and pectin, but not starch, chitin and agar. The different carbohydrate-active enzymes encoded in the genomes of strain GE09T and M. algicola Z1T highlights their differences in terms of target energy sources and reflects their isolation environments. The major cellular fatty acids of strain GE09T were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω7c. The polar lipid profile showed phosphatidylglycerol and phosphatidylethanolamine. The major respiratory quinone was Q-8. Based on these distinct taxonomic characteristics, strain GE09T represents a new species in the genus Marinagarivorans, for which we propose the name Marinagarivorans cellulosilyticus sp. nov. (type strain GE09T=DSM 113420T=JCM 35003T).


Asunto(s)
Gammaproteobacteria , Noma , Humanos , Japón , Agar , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Bacterias , Celulosa
4.
ISME J ; 17(1): 12-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36151459

RESUMEN

Electroautotrophic microorganisms have attracted great attention since they exhibit a new type of primary production. Here, in situ electrochemical cultivation was conducted using the naturally occurring electromotive forces at a deep-sea hydrothermal vent. The voltage and current generation originating from the resulting microbial activity was observed for 12 days of deployment, with fluctuation in response to tidal cycles. A novel bacterium belonging to the genus Thiomicrorhabdus dominated the microbial community specifically enriched on the cathode. Metagenomic analysis provided the draft genome of the bacterium and the gene repertoire indicated that the bacterium has the potential for thio-autotrophic growth, which is a typical physiological feature of the members of the genus, while the bacterium had a unique gene cluster encoding multi-heme cytochrome c proteins responsible for extracellular electron transfer. Herein, we propose this bacterium as a new species, specifically enriched during electricity generation, as 'Candidatus Thiomicrorhabdus electrophagus'. This finding suggests the natural occurrence of electrosynthetic microbial populations using the geoelectricity in deep-sea hydrothermal environments.


Asunto(s)
Respiraderos Hidrotermales , Microbiota , Respiraderos Hidrotermales/microbiología , Filogenia , Metagenómica , Microbiota/genética , Bacterias , Electricidad
5.
iScience ; 25(8): 104732, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36039358

RESUMEN

Substrates for enzymatic reactions, such as cellulose and chitin, are often insoluble in water. The enzymatic degradation of these abundant organic polymers plays a dominant role in the global carbon cycle and has tremendous technological importance in the production of bio-based chemicals. In addition, biodegradation of plastics is gaining wide attention. However, despite the significance, assaying these degradation reactions remains technically challenging owing to the low reaction rate, because only the surface of the substrate is accessible to the enzymes. We developed a nanofiber-based assay for the enzymatic hydrolysis of cellulose. This assay facilitated the quantification of the enzymatic hydrolysis of <1 ng crystalline cellulose. Utilization of the assay for the functional screening of cellulolytic microorganisms revealed an unprecedented genetic diversity underlying the production of deep-sea cellulase. This study reiterates that interdisciplinary efforts, such as from nanotechnology to microbiology, are critical for solving sustainability challenges.

6.
Appl Environ Microbiol ; 88(2): e0075821, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34788070

RESUMEN

The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and "Bathymodiolus" platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.


Asunto(s)
Methylococcaceae , Microbiota , Mytilidae , Animales , Metano/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Mytilidae/microbiología , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
7.
ISME Commun ; 1(1): 38, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37938253

RESUMEN

Deep-sea Bathymodiolus mussels are generally thought to harbour chemosynthetic symbiotic bacteria in gill epithelial cells called bacteriocytes. However, previously observed openings at the apical surface of bacteriocytes have not been conclusively explained and investigated as to whether the Bathymodiolus symbiosis is intracellular or extracellular. In this study, we show that almost all the membranous chambers encompassing symbionts in a single bacteriocyte of Bathymodiolus septemdierum are interconnected and have pathways connecting to the external environment. Furthermore, the symbiont population colonising a single bacteriocyte is mostly clonal. This study hypothesises on a novel model of cellular localization at the interface between extra- and intracellular symbiosis, and the cellular-level process of symbiont acquisition in Bathymodiolus mussels.

8.
ISME J ; 14(3): 740-756, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31827245

RESUMEN

Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. Our trans-trench analysis highlights intra- and inter-trench distributions of microbial assemblages and geochemistry in surface seafloor sediments, providing novel insights into ultradeep-sea microbial ecology, one of the last frontiers on our planet.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Sedimentos Geológicos/química , Japón , Nitratos/metabolismo , Océano Pacífico
9.
Microbes Environ ; 32(4): 336-343, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29187708

RESUMEN

Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA.


Asunto(s)
ADN de Archaea/genética , ADN Bacteriano/genética , ADN Protozoario/genética , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/parasitología , Metagenoma/genética , Metagenómica/métodos , Composición de Base/genética , Secuencia de Bases , Biodiversidad , ADN de Archaea/análisis , ADN Bacteriano/análisis , ADN Protozoario/análisis , Biblioteca de Genes , Agua de Mar/microbiología , Agua de Mar/parasitología , Análisis de Secuencia de ADN
10.
ISME J ; 10(4): 990-1001, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26418631

RESUMEN

Chemosynthetic symbiosis is one of the successful systems for adapting to a wide range of habitats including extreme environments, and the metabolic capabilities of symbionts enable host organisms to expand their habitat ranges. However, our understanding of the adaptive strategies that enable symbiotic organisms to expand their habitats is still fragmentary. Here, we report that a single-ribotype endosymbiont population in an individual of the host vent mussel, Bathymodiolus septemdierum has heterogeneous genomes with regard to the composition of key metabolic gene clusters for hydrogen oxidation and nitrate reduction. The host individual harbours heterogeneous symbiont subpopulations that either possess or lack the gene clusters encoding hydrogenase or nitrate reductase. The proportions of the different symbiont subpopulations in a host appeared to vary with the environment or with the host's development. Furthermore, the symbiont subpopulations were distributed in patches to form a mosaic pattern in the gill. Genomic heterogeneity in an endosymbiont population may enable differential utilization of diverse substrates and confer metabolic flexibility. Our findings open a new chapter in our understanding of how symbiotic organisms alter their metabolic capabilities and expand their range of habitats.


Asunto(s)
Genes Bacterianos , Familia de Multigenes , Mytilidae/microbiología , Simbiosis , Animales , Ecosistema , Branquias , Hibridación in Situ , Oxígeno/química , Reacción en Cadena de la Polimerasa , Agua de Mar/microbiología , Análisis de Secuencia de ADN
11.
J Wildl Dis ; 50(3): 596-606, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807184

RESUMEN

The signaling lymphocyte activation molecule (SLAM) is a receptor for morbilliviruses. To understand the recent host range expansion of canine distemper virus (CDV) in carnivores, we determined the nucleotide sequences of SLAMs of various carnivores and generated three-dimensional homology SLAM models. Thirty-four amino acid residues were found for the candidates binding to CDV on the interface of the carnivore SLAMs. SLAM of the domestic dog (Canis lupus familiaris) were similar to those of other members of the suborder Caniformia, indicating that the animals in this group have similar sensitivity to dog CDV. However, they were different at nine positions from those of felids. Among the nine residues, four of domestic cat (Felis catus) SLAM (72, 76, 82, and 129) and three of lion (Panthera leo persica) SLAM (72, 82, and 129) were associated with charge alterations, suggesting that the felid interfaces have lower affinities to dog CDV. Only the residue at 76 was different between domestic cat and lion SLAM interfaces. The domestic cat SLAM had threonine at 76, whereas the lion SLAM had arginine, a positively charged residue like that of the dog SLAM. The cat SLAM with threonine is likely to have lower affinity to CDV-H and to confer higher resistance against dog CDV. Thus, the four residues (72, 76, 82, and 129) on carnivore SLAMs are important for the determination of affinity and sensitivity with CDV. Additionally, the CDV-H protein of felid strains had a substitution of histidine for tyrosine at 549 of dog CDV-H and may have higher affinity to lion SLAM. Three-dimensional model construction is a new risk assessment method of morbillivirus infectivity. Because the method is applicable to animals that have no information about virus infection, it is especially useful for morbillivirus risk assessment and wildlife conservation.


Asunto(s)
Antígenos CD/metabolismo , Carnívoros , Virus del Moquillo Canino/fisiología , Moquillo/virología , Variación Genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Animales , Animales Salvajes , Antígenos CD/genética , Especificidad del Huésped , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Receptores de Superficie Celular/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA