Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(3)2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30744031

RESUMEN

This article proposes a novel chunk-based caching scheme known as the Progressive Popularity-Aware Caching Scheme (PPCS) to improve content availability and eliminate the cache redundancy issue of Information-Centric Networking (ICN). Particularly, the proposal considers both entire-object caching and partial-progressive caching for popular and non-popular content objects, respectively. In the case that the content is not popular enough, PPCS first caches initial chunks of the content at the edge node and then progressively continues caching subsequent chunks at upstream Content Nodes (CNs) along the delivery path over time, according to the content popularity and each CN position. Therefore, PPCS efficiently avoids wasting cache space for storing on-path content duplicates and improves cache diversity by allowing no more than one replica of a specified content to be cached. To enable a complete ICN caching solution for communication networks, we also propose an autonomous replacement policy to optimize the cache utilization by maximizing the utility of each CN from caching content items. By simulation, we show that PPCS, utilizing edge-computing for the joint optimization of caching decision and replacement policies, considerably outperforms relevant existing ICN caching strategies in terms of latency (number of hops), cache redundancy, and content availability (hit rate), especially when the CN's cache size is small.

2.
Artículo en Inglés | MEDLINE | ID: mdl-24492645

RESUMEN

The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.


Asunto(s)
Atmósfera , Sistemas de Información Geográfica , Gravitación , Radar , Ondas de Radio , Modelos Teóricos
3.
Appl Opt ; 43(14): 2930-9, 2004 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-15143820

RESUMEN

We describe the performance of a combined Raman lidar. The temperature is measured with the rotational Raman technique and with the integration technique simultaneously. Additionally measured parameters are particle extinction and backscatter coefficients and water vapor mixing ratio. In a previous stage of the system, instrumental problems restricted the performance. We describe how we rebuilt the instrument and overcame these restrictions. As a result, the measurement time for the same spatial resolution and accuracy of the rotational Raman temperature measurements is reduced by a factor of approximately 4.3, and their range could be extended for the first time to the upper stratosphere.

4.
Appl Opt ; 41(36): 7657-66, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12510935

RESUMEN

The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) make use of two pure rotational Raman (MR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significant smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signal are needed the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s -statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is < 1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...