Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39370640

RESUMEN

High-temperature shock (HTS) is an emerging material synthesis technology with advantages, such as rapid processing, low energy consumption, and high controllability. This technology can prepare ultrafine nanoparticles with uniform particle size distribution and introduce additional oxygen vacancies, offering significant potential for the preparation of key materials for solid oxide electrochemical cells (SOCs). In this study, the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) air electrode was successfully prepared using HTS technology. Compared to the conventional muffle furnace calcination, the HTS-prepared LSCF exhibits a larger specific surface area and a higher oxygen vacancy concentration, and it demonstrates significant improvements in performance. The oxygen ion conducting SOC (O-SOC) with the HTS-LSCF air electrode achieved a peak power density (PPD) of 960 mW cm-2 and a current density of 0.38 A cm-2 (at 1.3 V) at 700 °C. Meanwhile, the proton conducting SOC (P-SOC) with HTS-LSCF air electrode reached a PPD value of 1.34 W cm-2 and a current density of 3.43 A cm-2 (at 1.3 V) at 700 °C. Additionally, the P-SOC with HTS-LSCF air electrode showed no significant degradation during over 200 h of long-term testing, reflecting the excellent stability of HTS-LSCF. This work provides a fast, efficient, and economical approach for synthesizing high-performance, high-stability SOC air electrode materials.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37906033

RESUMEN

Interfacial delamination between the oxygen-electrode and electrolyte is a significant factor impacting the reliability of solid oxide electrolysis cells (SOECs) when operating at high voltages. The most effective method to mitigate this delamination is to decrease the interfacial oxygen partial pressure, which can be accomplished by amplifying the oxygen exsolution rate and the O2- transport rate of the oxygen-electrode. In this study, a SrCo0.9Ta0.1O3-δ (SCT) film with an outstanding oxygen surface exchange coefficient and an outstanding O2- conductivity was introduced onto the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) surface by infiltration. This composite oxygen-electrode exhibited a notably high electrochemical catalytic activity primarily due to the significantly improved O2- transport and oxygen surface exchange rate. Single cells with a 15-LSCF oxygen-electrode achieved a peak power density of 1.33 W cm-2 at 700 °C and a current density of 1.25 A cm-2 at 1.3 V (60% H2O-H2) at 750 °C. Additionally, an electrolysis cell with a 15 wt % SCT-infiltrated LSCF oxygen-electrode demonstrated stable operation even at high current densities for over 330 h with no noticeable delamination. The remarkable durability of the 15-LSCF oxygen-electrode can be attributed to the boosted oxygen exsolution reaction (OER) activity and the suppression of Sr segregation due to SCT infiltration. The impressive OER activity and resistance to interfacial delamination make the 15-LSCF a promising candidate for a composite oxygen-electrode in SOECs.

3.
Nano Lett ; 21(20): 8764-8769, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34613736

RESUMEN

Ionic conductivity enables the technologies of fuel cells, electrolysis cells, and batteries. However, the ambiguous origins of the extraordinary ionic conductivity impede its implementation in heterostructure films for the devices. Here, we disclosed that the extraordinary ionic and electronic conductivities come from field effect. We found in Ce0.8Gd0.2O2-δ (CGO)/Zr0.85Y0.15O2-δ (YSZ) heterostructures that the ionic conductivity of CGO layer (n-i conductor) and the electronic conductivity of YSZ layer (p-i conductor) exponentially increased with potential. The potential occurred from electron transfer and stoichiometric polarization in p-i-n junction. Field effect ionic conductivity contributed the major increment in the maximum power density. The results demonstrated field effect ionic and electronic conductivities, their dependences on heterostructures, and impacts on fuel cells.

4.
Entropy (Basel) ; 22(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333980

RESUMEN

In order to investigate the influence of steam ingestion on the aerodynamic stability of a two-stage low-speed axial-flow compressor, multiphase flow numerical simulation and experiment were carried out. The total pressure ratio and stall margin of the compressor was decreased under steam ingestion. When the compressor worked at 40% and 53% of the nominal speed, the stall margin decreased, respectively, by 1.5% and 6.3%. The ingested steam reduced the inlet Mach number and increased the thickness of the boundary layer on the suction surface of the blade. The low-speed region around the trailing edge of the blade was increased, and the flow separation region of the boundary layer on the suction surface of the blade was expanded; thus, the compressor was more likely to enter the stall state. The higher the rotational speed, the more significant the negative influence of steam ingestion on the compressor stall margin. The entropy and temperature of air were increased by steam. The heat transfer between steam and air was continuous in compressor passages. The entropy of the air in the later stage was higher than that in the first stage; consequently, the flow loss in the second stage was more serious. Under the combined action of steam ingestion and counter-rotating bulk swirl distortion, the compressor stability margin loss was more obvious. When the rotor speed was 40% and 53% of the nominal speed, the stall margin decreased by 6.3% and 12.64%, respectively.

5.
Sci Prog ; 103(3): 36850420940920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32672092

RESUMEN

The aim of this article mainly lies in two aspects. The first is to investigate the effect of inlet swirl distortion on the performance and stability of a low-speed compressor experimentally. The second is to quantify swirl pattern revolution through the compressor and find out background causes of the change in compressor performance. Swirl distortion makes the leading-edge incidence opposite between tip and hub regions, compared to that of clean flow. And the compressor performance change is ultimately determined by these two aspects. Results indicate that negative bulk swirl improves pressure rise, and the effect is on the contrary to the positive bulk swirl. Under the condition of paired swirl, pressure rise also presents a reduction. All these three types of swirl have little effect on the stall boundary. Although swirl distortion shows clear recovery at rotor exit, downstream components still work at off-design conditions due to the induced nonuniformity in axial velocity and total pressure.

6.
Nano Lett ; 15(3): 1703-9, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25686380

RESUMEN

Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.


Asunto(s)
Suministros de Energía Eléctrica , Electrodos , Transferencia de Energía , Nanopartículas del Metal/química , Circonio/química , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas del Metal/ultraestructura , Nanopartículas , Oxidación-Reducción , Óxidos/química , Tamaño de la Partícula
7.
Chem Commun (Camb) ; 49(8): 777-9, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23108180

RESUMEN

The YSZ electrolyte fuel cell with a ternary cathode composed of LSM-YSZ-Ce(0.9)Mn(0.1)O(2-δ) exhibits ca. 2.6 times higher current density than that with a binary cathode composed of LSM-YSZ at 600 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA