Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
ANZ J Surg ; 78(9): 800-2, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18844913

RESUMEN

BACKGROUND: Accurate operation record keeping is an important element of risk management. Handwritten surgical notes are often produced as evidence in medico-legal malpractice cases and incomplete and illegible notes may be a source of weakness in a surgeon's defence. Therefore, we audited the surgical notes in a teaching hospital surgical department. METHODS: During 1 week 190 operative notes were audited for patient identity details, preoperative diagnosis, operation title and details, CMB code, postoperative instruction and author of the note. The operative notes were assessed by a medico-legal lawyer and a medical expert to establish level of legibility and usefulness in a virtual court case. RESULTS: Several operative notes were found incomplete (51.57%) missing important information as CMB code (13.68%), patient details (6.8%) preoperative diagnosis (6.31%), operation title (6.31%) and postoperative instruction (14.73%). Overall, only 92 notes were complete. CONCLUSION: This audit suggests that handwritten surgical notes generate several errors that could lead to confusion when notes are reviewed for further follow up or are produced as evidence in medico-legal disputes.


Asunto(s)
Registros Médicos/normas , Procedimientos Quirúrgicos Operativos , Control de Formularios y Registros , Hospitales de Enseñanza , Humanos , Auditoría Médica , Registros Médicos/legislación & jurisprudencia
2.
Neuroscience ; 142(4): 1031-42, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16935432

RESUMEN

T-type calcium channel isoforms are expressed in a multitude of tissues and have a key role in a variety of physiological processes. To fully appreciate the physiological role of distinct channel isoforms it is essential to determine their kinetic properties under physiologically relevant conditions. We therefore characterized the gating behavior of expressed rat voltage-dependent calcium channels (Ca(v)) 3.1, Ca(v)3.2, and Ca(v)3.3, as well as human Ca(v)3.3 at 21 degrees C and 37 degrees C in saline that approximates physiological conditions. Exposure to 37 degrees C caused significant increases in the rates of activation, inactivation, and recovery from inactivation, increased the current amplitudes, and induced a hyperpolarizing shift of half-activation for Ca(v)3.1 and Ca(v)3.2. At 37 degrees C the half-inactivation showed a hyperpolarizing shift for Ca(v)3.1 and Ca(v)3.2 and human Ca(v)3.3, but not rat Ca(v)3.3. The observed changes in the kinetics were significant but not identical for the three isoforms, showing that the ability of T-type channels to conduct calcium varies with both channel isoform and temperature.


Asunto(s)
Temperatura Corporal/fisiología , Canales de Calcio Tipo T/genética , Señalización del Calcio/genética , Membrana Celular/genética , Activación del Canal Iónico/genética , Animales , Línea Celular , Humanos , Cinética , Potenciales de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Ratas
3.
Artículo en Inglés | MEDLINE | ID: mdl-16425062

RESUMEN

Potassium channels are one of the fundamental requirements for the generation of action potentials in the nervous system, and their characteristics shape the output of neurons in response to synaptic input. We review here the distribution and function of a high-threshold potassium channel (Kv3.3) in the electrosensory lateral line lobe of the weakly electric fish Apteronotus leptorhynchus, with particular focus on the pyramidal cells in this brain structure. These cells contain both high-threshold Kv3.3 channels, as well as low-threshold potassium channels of unknown molecular identity. Kv3.3 potassium channels regulate burst discharge in pyramidal cells and enable sustained high frequency firing through their ability to reduce an accumulation of low-threshold potassium current.


Asunto(s)
Encéfalo/citología , Pez Eléctrico/anatomía & histología , Pez Eléctrico/fisiología , Órgano Eléctrico/metabolismo , Proteínas de Peces/metabolismo , Células Piramidales/fisiología , Canales de Potasio Shaw/metabolismo , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Órgano Eléctrico/anatomía & histología , Estimulación Eléctrica/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/efectos de la radiación , Células Piramidales/ultraestructura
4.
Eur J Neurosci ; 20(3): 729-39, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15255983

RESUMEN

The ability of cells to generate an appropriate spike output depends on a balance between membrane depolarizations and the repolarizing actions of K(+) currents. The high-voltage-activated Kv3 class of K(+) channels repolarizes Na(+) spikes to maintain high frequencies of discharge. However, little is known of the ability for these K(+) channels to shape Ca(2+) spike discharge or their ability to regulate Ca(2+) spike-dependent burst output. Here we identify the role of Kv3 K(+) channels in the regulation of Na(+) and Ca(2+) spike discharge, as well as burst output, using somatic and dendritic recordings in rat cerebellar Purkinje cells. Kv3 currents pharmacologically isolated in outside-out somatic membrane patches accounted for approximately 40% of the total K(+) current, were very fast and high voltage activating, and required more than 1 s to fully inactivate. Kv3 currents were differentiated from other tetraethylammonium-sensitive currents to establish their role in Purkinje cells under physiological conditions with current-clamp recordings. Dual somatic-dendritic recordings indicated that Kv3 channels repolarize Na(+) and Ca(2+) spikes, enabling high-frequency discharge for both types of cell output. We further show that during burst output Kv3 channels act together with large-conductance Ca(2+)-activated K(+) channels to ensure an effective coupling between Ca(2+) and Na(+) spike discharge by preventing Na(+) spike inactivation. By contributing significantly to the repolarization of Na(+) and especially Ca(2+) spikes, our data reveal a novel function for Kv3 K(+) channels in the maintenance of high-frequency burst output for cerebellar Purkinje cells.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/citología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Animales Recién Nacidos , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Venenos Elapídicos/farmacología , Estimulación Eléctrica/métodos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp/métodos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Células de Purkinje/efectos de los fármacos , Células de Purkinje/efectos de la radiación , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shaw , Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
5.
J Comp Neurol ; 441(3): 234-47, 2001 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-11745647

RESUMEN

The expression pattern and subcellular distribution of a teleost homologue of the mammalian Kv3.3 potassium channel, AptKv3.3, was examined in the electrosensory lateral line lobe (ELL) and two cerebellar lobes in the hindbrain of the weakly electric gymnotiform Apteronotus leptorhynchus. AptKv3.3 expression was brain specific, with the highest level of expression in the cerebellum and 56% relative expression in the ELL. In situ hybridization revealed that AptKv3.3 mRNA was present in virtually all cell classes in the ELL as well as in the cerebellar lobes eminentia granularis pars posterior (EGp) and corpus cerebellum (CCb). Immunocytochemistry indicated a distribution of AptKv3.3 channels over the entire soma-dendritic axis of ELL pyramidal, granule, and polymorphic cells and over the soma and at least proximal dendrites (100 microm) of multipolar cells and neurons of the ventral molecular layer. AptKv3.3 immunolabel was present at the soma of cerebellar granule, golgi, eurydendroid, and CCb Purkinje cells, with an equally intense label throughout the dendrites of CCb Purkinje cells and EGp eurydendroid cells. Immunolabel was virtually absent in afferent or efferent axon tracts of the ELL but was detected on climbing fiber axons and on the axons and putative terminal boutons of CCb Purkinje cells. These data reveal a prominent soma-dendritic distribution of AptKv3.3 K+ channels in both principal output and local circuit neurons, a pattern that is distinct from the soma-axonal distribution that characterizes all other Kv3 K+ channels examined to date. The widespread distribution of AptKv3.3 immunolabel in electrosensory cells implies an important role in several aspects of signal processing.


Asunto(s)
Cerebelo/metabolismo , Dendritas/metabolismo , Pez Eléctrico/metabolismo , Órgano Eléctrico/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Animales , Cerebelo/citología , Órgano Eléctrico/citología , Femenino , Técnicas Inmunológicas , Masculino , Neuronas Aferentes/metabolismo , Ensayos de Protección de Nucleasas , Canales de Potasio/genética , ARN Mensajero/metabolismo , Rombencéfalo/metabolismo , Distribución Tisular
6.
J Neurophysiol ; 86(4): 1523-45, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11600618

RESUMEN

Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is conditional on the frequency of action potential discharge ("conditional backpropagation"). Spike bursts are characterized by a progressive decrease in inter-spike intervals (ISIs), and an increase of dendritic spike duration and the amplitude of a somatic depolarizing afterpotential (DAP). The bursts are terminated when a high-frequency somatic spike doublet exceeds the dendritic spike refractory period, preventing spike backpropagation. We present a detailed multi-compartmental model of an ELL basilar pyramidal cell to simulate somatic and dendritic spike discharge and test the conditions necessary to produce a burst output. The model ionic channels are described by modified Hodgkin-Huxley equations and distributed over both soma and dendrites under the constraint of available immunocytochemical and electrophysiological data. The currents modeled are somatic and dendritic sodium and potassium involved in action potential generation, somatic and proximal apical dendritic persistent sodium, and K(V)3.3 and fast transient A-like potassium channels distributed over the entire model cell. The core model produces realistic somatic and dendritic spikes, differential spike refractory periods, and a somatic DAP. However, the core model does not produce oscillatory spike bursts with constant depolarizing stimuli. We find that a cumulative inactivation of potassium channels underlying dendritic spike repolarization is a necessary condition for the model to produce a sustained gamma-frequency burst pattern matching experimental results. This cumulative inactivation accounts for a frequency-dependent broadening of dendritic spikes and results in a conditional failure of backpropagation when the intraburst ISI exceeds dendritic spike refractory period, terminating the burst. These findings implicate ion channels involved in repolarizing dendritic spikes as being central to the process of conditional backpropagation and oscillatory burst discharge in this principal sensory output neuron of the ELL.


Asunto(s)
Mecanorreceptores/fisiología , Modelos Neurológicos , Periodicidad , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Dendritas/fisiología , Pez Eléctrico , Potenciales Postsinápticos Excitadores/fisiología , Activación del Canal Iónico/fisiología , Mecanorreceptores/citología , Neuronas Aferentes/fisiología , Neuronas Aferentes/ultraestructura , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , Células Piramidales/ultraestructura , Tiempo de Reacción/fisiología , Sodio/metabolismo , Canales de Sodio/fisiología
7.
J Neurosci ; 21(1): 125-35, 2001 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11150328

RESUMEN

Voltage-gated ion channels localized to dendritic membranes can shape signal processing in central neurons. This study describes the distribution and functional role of a high voltage-activating K(+) channel in the electrosensory lobe (ELL) of an apteronotid weakly electric fish. We identify a homolog of the Kv3.3 K(+) channel, AptKv3.3, that exhibits a high density of mRNA expression and immunolabel that is distributed over the entire soma-dendritic axis of ELL pyramidal cells. The kinetics and pharmacology of native K(+) channels recorded in pyramidal cell somata and apical dendrites match those of AptKv3.3 channels expressed in a heterologous expression system. The functional role of AptKv3.3 channels was assessed using focal drug ejections in somatic and dendritic regions of an in vitro slice preparation. Local blockade of AptKv3.3 channels slows the repolarization of spikes in pyramidal cell somata as well as spikes backpropagating into apical dendrites. The resulting increase in dendritic spike duration lowers the threshold for a gamma-frequency burst discharge that is driven by inward current associated with backpropagating dendritic spikes. Thus, dendritic AptKv3.3 K(+) channels influence the threshold for a form of burst discharge that has an established role in feature extraction of sensory input.


Asunto(s)
Dendritas/metabolismo , Neuronas Aferentes/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Umbral Sensorial/fisiología , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/fisiología , Encéfalo/citología , Encéfalo/metabolismo , Línea Celular , Clonación Molecular , Pez Eléctrico , Proteínas de Peces , Expresión Génica , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular , Neuronas Aferentes/citología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio , Canales de Potasio/genética , Células Piramidales/citología , Células Piramidales/metabolismo , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Canales de Potasio Shaw , Sodio/metabolismo , Transfección
8.
J Neurophysiol ; 84(3): 1519-30, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10980024

RESUMEN

Backpropagating dendritic Na(+) spikes generate a depolarizing afterpotential (DAP) at the soma of pyramidal cells in the electrosensory lateral line lobe (ELL) of weakly electric fish. Repetitive spike discharge is associated with a progressive depolarizing shift in somatic spike afterpotentials that eventually triggers a high-frequency spike doublet and subsequent burst afterhyperpolarization (bAHP). The rhythmic generation of a spike doublet and bAHP groups spike discharge into an oscillatory burst pattern. This study examined the soma-dendritic mechanisms controlling the depolarizing shift in somatic spike afterpotentials, and the mechanism by which spike doublets terminate spike discharge. Intracellular recordings were obtained from ELL pyramidal somata and apical dendrites in an in vitro slice preparation. The pattern of spike discharge was equivalent in somatic and dendritic regions, reflecting the backpropagation of spikes from soma to dendrites. There was a clear frequency-dependent threshold in the transition from tonic to burst discharge, with bursts initiated when interspike intervals fell between approximately 3-7 ms. Removal of all backpropagating spikes by dendritic TTX ejection revealed that the isolated somatic AHPs were entirely stable at the interspike intervals that generated burst discharge. As such, the depolarizing membrane potential shift during repetitive discharge could be attributed to a potentiation of DAP amplitude. Potentiation of the DAP was due to a frequency-dependent broadening and temporal summation of backpropagating dendritic Na(+) spikes. Spike doublets were generated with an interspike interval close to, but not within, the somatic spike refractory period. In contrast, the interspike interval of spike doublets always fell within the longer dendritic refractory period, preventing backpropagation of the second spike of the doublet. The dendritic depolarization was thus abruptly removed from one spike to the next, allowing the burst to terminate when the bAHP hyperpolarized the membrane. The transition from tonic to burst discharge was dependent on the number and frequency of spikes invoking dendritic spike summation, indicating that burst threshold depends on the immediate history of cell discharge. Spike frequency thus represents an important condition that determines the success of dendritic spike invasion, establishing an intrinsic mechanism by which backpropagating spikes can be used to generate a rhythmic burst output.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Aferentes/metabolismo , Células Piramidales/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Relojes Biológicos/efectos de los fármacos , Relojes Biológicos/fisiología , Dendritas/fisiología , Pez Eléctrico , Técnicas In Vitro , Modelos Neurológicos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Tiempo de Reacción/fisiología , Umbral Sensorial/fisiología , Sodio/metabolismo , Tetrodotoxina/farmacología
9.
J Neurophysiol ; 78(4): 1869-81, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9325356

RESUMEN

The electrosensory lateral line lobe (ELL) of the South American gymnotiform fish Apteronotus leptorhynchus has a laminar structure: electroreceptor afferents terminate ventrally whereas feedback input distributes to a superficial molecular layer containing the dendrites of the ELL principle (pyramidal) cells. There are two feedback pathways: a direct feedback projection that enters the ELL via a myelinated tract (stratum fibrosum, StF) and terminates in the ventral molecular layer (VML) and an indirect projection that enters as parallel fibers and terminates in the dorsal molecular layer. It has been proposed that the direct feedback pathway serves as a "searchlight" mechanism. This study characterizes StF synaptic transmission to determine whether the physiology of the direct feedback projection is consistent with this hypothesis. We used field and intracellular recordings from the ELL to investigate synaptic transmission of the StF in an in vitro slice preparation. Stimulation of the StF produced field potentials with a maximal negativity confined to a narrow band of tissue dorsal to the StF. Current source density analysis revealed two current sinks: an early sink within the StF and a later sink that corresponded to the anatomically defined VML. Field potential recordings from VML demonstrated that stimulation of the StF evoked an excitatory postsynaptic potential (EPSP) that peaked at a latency of 4-7 ms with a slow decay ( approximately 50 ms) to baseline. Intracellular recordings from pyramidal cells revealed that StF-evoked EPSPs consisted of at least two components: a fast gap junction mediated EPSP (peak 1.2-1.8 ms) and a chemical synaptic potential (peak 4-7 ms) with a slow decay phase ( approximately 50 ms). The amplitudes of the peak and decay phases of the chemical EPSP were increased by depolarizing current injection. Pharmacological studies demonstrated that the chemical EPSP was mainly due to ionotropic glutamate receptors with bothN-methyl--aspartate (NMDA) and non-NMDA components. NMDA receptors contributed substantially to both the early and late phase of the EPSP, whereas non-NMDA receptors contributed mainly to the early phase. Stimulation of the StF at physiological rates (100-200 Hz, 100 ms) produced an augmenting depolarization of the membrane potential of pyramidal cells. Temporal summation and a voltage-dependent enhancement of later EPSPs in the stimulus train permitted the compound EPSP to reach spike threshold. The nonlinear behavior of StF synaptic potentials is appropriate for the putative role of the direct feedback pathway as part of a searchlight mechanism allowing these fish to increase the electrodetectability of scanned objects.


Asunto(s)
Retroalimentación/fisiología , Neuronas Aferentes/fisiología , Receptores de Aminoácidos/fisiología , Transmisión Sináptica/fisiología , Animales , Peces , N-Metilaspartato/fisiología
10.
J Comp Neurol ; 386(2): 277-92, 1997 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-9295152

RESUMEN

A modification of the tissue printing technique was used to acutely isolate and culture cells from the electrosensory lateral line lobe (ELL), corpus cerebelli (CCb), and eminentia granularis pars posterior (EGp) of the adult weakly electric fish, Apteronotus leptorhynchus. Cells were isolated without the use of proteolytic enzymes and tissue printed as a monolayer onto glass coverslips through centrifugation in the presence of a medium designed to preserve cell structure. Tissue printed cells were reliably distributed in an organotypic fashion that allowed for the identification of anatomical boundaries between the ELL and cerebellar regions, distinct sensory maps in the ELL, and specific cell laminae. Many cells were isolated with an excellent preservation of soma-dendritic structure, permitting direct identification of all electrosensory cell classes according to morphological or immunocytochemical criteria. Several classes of glial cells were isolated, including small diameter microglia and the complex arborizations of oligodendrocytes. A plexus of fine processes were often isolated in conjunction with cell somata and dendrites, potentially preserving synaptic contacts in vitro. In particular, immunolabel for gamma-aminobutyric acid (GABA) revealed a previously unrecognized network of GABAergic axonal processes in the CCb and EGp granule cell body and molecular layers. Tissue printed cells were readily maintained with an organotypic distribution of glial and neuronal elements for up to 27 days in culture. This procedure will allow for the isolation of electrosensory cells from adult central nervous system for electrophysiological analyses of membrane properties or synaptic interactions between identified cells.


Asunto(s)
Cerebelo/fisiología , Pez Eléctrico/fisiología , Neuronas Aferentes/fisiología , Animales , Células Cultivadas , Cerebelo/citología , Electrofisiología , Inmunohistoquímica , Bulbo Raquídeo/citología , Bulbo Raquídeo/crecimiento & desarrollo , Bulbo Raquídeo/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA