Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 948: 174817, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019269

RESUMEN

The concept of solar geoengineering remains a topic of debate, yet it may be an effective way for cooling the Earth's temperature. Nevertheless, the impact of solar geoengineering on regional or local climate patterns is an active area of research. This study aims to evaluate the impact of solar geoengineering on precipitation and temperature extremes of the Muda River Basin (MRB), a very important agricultural basin situated in the northern Peninsular Malaysia. The analysis utilized the multi-model ensemble mean generated by four models that contributed to the Geoengineering Model Intercomparison Project (GeoMIP6). These models were configured to simulate the solar irradiance reduction (G6solar) and stratospheric sulfate aerosols (G6sulfur) strategies as well as the moderate (SSP245) and high emission (SSP585) experiments. Prior to the computation of extreme indices, a linear scaling approach was employed to bias correct the daily precipitation, maximum and minimum temperatures. The findings show that the G6solar and G6sulfur experiments, particularly the latter, could be effective in holding the increases in both annual and monthly mean precipitation totals and temperature extremes close to the increases projected under SSP245. For example, both G6solar and G6sulfur experiments project increases of temperature over the basin of 2 °C at the end of the 21st century as compared to 3.5 °C under SSP585. The G6solar and G6sulfur experiments also demonstrate some reliability in modulating the increases in precipitation extreme indices associated with flooding to match those under SSP245. However, the G6sulfur experiment may exacerbate dry conditions in the basin, as monthly precipitation is projected to decrease during the dry months from January to May and consecutives dry days are expected to increase, particularly during the 2045-2064 and 2065-2084 periods. Increases dry spells could indirectly affect agricultural and freshwater supplies, and pose considerable challenges to farmers.

2.
J Flood Risk Manag ; 12(4): e12491, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32051692

RESUMEN

Convective precipitation is intensifying in many regions, but potential implications of shifts in precipitation types on impacts have not been quantified. Furthermore, risk assessments often focus on rare extremes, but also more frequent hydro-meteorological events burden private and public budgets. Here synoptic, hydrological, meteorological, and socio-economic data are merged to analyse 25 years of damage claims in 480 Austrian municipalities. Exceedance probabilities of discharge and precipitation associated with damage reports are calculated and compared for convective and stratiform weather patterns. During April to November, 60% of claims are reported under convective conditions. Irrespective of the weather type, most of the accumulated cost links to minor hazard levels, not only indicating that frequent events are a highly relevant expense factor, but also pointing to deficiencies in observational data. High uncertainty in damage costs attributable to extreme events demonstrates the questionable reliability of calculating low-frequency event return levels. Significant differences exist among weather types. Stratiform weather types are up to 10 times more often associated with damaging extreme discharge or precipitation, while convective weather shows the highest nuisance level contributions. The results show that changes in convective precipitation are pertinent to risk management as convective weather types have contributed significantly to damage in the past.

3.
Risk Anal ; 38(9): 1772-1780, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29694670

RESUMEN

Regulatory agencies have long adopted a three-tier framework for risk assessment. We build on this structure to propose a tiered approach for resilience assessment that can be integrated into the existing regulatory processes. Comprehensive approaches to assessing resilience at appropriate and operational scales, reconciling analytical complexity as needed with stakeholder needs and resources available, and ultimately creating actionable recommendations to enhance resilience are still lacking. Our proposed framework consists of tiers by which analysts can select resilience assessment and decision support tools to inform associated management actions relative to the scope and urgency of the risk and the capacity of resource managers to improve system resilience. The resilience management framework proposed is not intended to supplant either risk management or the many existing efforts of resilience quantification method development, but instead provide a guide to selecting tools that are appropriate for the given analytic need. The goal of this tiered approach is to intentionally parallel the tiered approach used in regulatory contexts so that resilience assessment might be more easily and quickly integrated into existing structures and with existing policies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...