Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Immunol ; 15: 1465952, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39324137

RESUMEN

Red river hogs (RRHs) (Potamochoerus porcus), a wild species of Suidae living in Africa with a major distribution in the Guinean and Congolian forests, are natural reservoirs of African swine fever virus (ASFV) and typically are asymptomatic. Since blood and tissue macrophages of suid animals are target cell lineages of ASFV, RRH-derived macrophages are expected to play an important role in suppressing disease development in infected individuals. In the present study, we successfully isolated RRH-derived blood macrophages using co-culture techniques of RRH blood cells with porcine kidney-derived feeder cells and immortalized them by transferring SV40 large T antigen and porcine telomerase reverse transcriptase genes. The newly established macrophage cell line of the RRH-derived blood cell origin (RZJ/IBM) exhibited an Iba1-, CD172a-, and CD203a-positive typical macrophage-like phenotype and up-regulated the phosphorylation of nuclear factor-κB p65 subunit and p38 mitogen-activated protein kinase in response to the bacterial cell wall components, lipopolysaccharide (LPS) and muramyl dipeptide. In addition, RZJ/IBM cells produced the precursor form of interleukin (IL)-1ß and IL-18 upon a stimulation with LPS, leading to the conversion of IL-18, but not IL-1ß, into the mature form. Time-lapse live cell imaging with pHrodo dye-conjugated Escherichia coli BioParticles demonstrated the phagocytotic activity of RZJ/IBM cells. It is important to note that RZJ/IBM cells are clearly susceptible to ASFV infection and support viral replication in vitro. Therefore, the RZJ/IBM cell line provides a unique model for investigating the pathogenesis of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Macrófagos , Animales , Macrófagos/inmunología , Macrófagos/virología , Macrófagos/metabolismo , Porcinos , Técnicas de Cocultivo , Línea Celular Transformada , Línea Celular , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/inmunología
2.
Genes (Basel) ; 15(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39202462

RESUMEN

We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism distribution and its influence on pneumonia in multiple commercial pig populations. Among the polymorphisms in 42 genes causing 634 amino acid substitutions extracted from the swine genome database, 80 in 24 genes were found to have a minor allele frequency of at least 10% in Japanese breeding stock pigs via targeted resequencing. Of these, 62 single nucleotide polymorphisms (SNPs) in 23 genes were successfully genotyped in 862 pigs belonging to four populations with data on pneumonia severity. Association analysis using a generalized linear mixed model revealed that 12 SNPs in nine genes were associated with pneumonia severity. In particular, SNPs in the cellular receptor for immunoglobulin G FCGR2B and the intracellular nucleic acid sensors IFI16 and LRRFIP1 were found to be associated with mycoplasmal pneumonia of swine or porcine pleuropneumonia in multiple populations and may therefore have wide applications in the improvement of disease resistance in pigs. Functional analyses at the cellular and animal levels are required to clarify the mechanisms underlying the effects of these SNPs on disease susceptibility.


Asunto(s)
Neumonía , Polimorfismo de Nucleótido Simple , Enfermedades de los Porcinos , Porcinos , Neumonía/genética , Neumonía/inmunología , Neumonía/microbiología , Neumonía/veterinaria , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Masculino , Femenino , Genotipo , Alelos , Índice de Severidad de la Enfermedad
4.
Environ Sci Pollut Res Int ; 31(9): 13941-13953, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265596

RESUMEN

The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineralization of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degraders and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns associated with biodegradable plastic persistence in agricultural and environmental contexts.


Asunto(s)
Plásticos Biodegradables , Microbiota , Poliésteres/metabolismo , Esterasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Suelo , Plásticos Biodegradables/metabolismo , Plásticos/metabolismo
5.
Anim Sci J ; 94(1): e13827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992553

RESUMEN

Closed-pig line breeding could change the genetic structure at a genome-wide scale because of the selection in a pig breeding population. We investigated the changes in population structure among generations at a genome-wide scale and the selected loci across the genome by comparing the observed and expected allele frequency changes in mycoplasma pneumonia of swine (MPS)-selected pigs. Eight hundred and seventy-four Landrace pigs, selected for MPS resistance without reducing average daily gain over five generations, had 37,299 single nucleotide polymorphisms (SNPs) and were used for genomic analyses. Regarding population structure, individuals in the first generation were the most widely distributed and then converged into a specific group, as they were selected over five generations. For allele frequency changes, 96 and 14 SNPs had higher allele frequency changes than the 99.9% and 99.99% thresholds of the expected changes, respectively. These SNPs were evenly spread across the genome, and a few of these selected regions overlapped with previously detected quantitative trait loci for MPS and immune-related traits. Our results indicated that the considerable changes in allele frequency were identified in many regions across the genome by closed-pig line breeding based on estimated breeding value.


Asunto(s)
Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos/genética , Animales , Neumonía Porcina por Mycoplasma/genética , Frecuencia de los Genes/genética , Sitios de Carácter Cuantitativo/genética , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo/veterinaria
6.
Front Vet Sci ; 9: 1058124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467652

RESUMEN

Mononuclear phagocytes (MNP), including monocytes, dendritic cells (DC), and macrophages, play critical roles in innate immunity. MNP are abundant in the lungs and contribute to host defense against airborne agents and pulmonary immune homeostasis. In this study, we isolated porcine lung-derived MNP (PLuM) from primary cultures of parenchymal lung cells and then immortalized them by transferring the SV40 large T antigen gene and porcine telomerase reverse transcriptase gene using lentiviral vectors. The established cell line, immortalized PLuM (IPLuM), expressed DC/macrophage markers; i.e., CD163, CD172a, and major histocompatibility complex class II, whereas they did not express a porcine monocyte-specific marker, CD52. The expression patterns of these cell surface markers indicate that IPLuM originate from the DC/macrophage lineage rather than the monocyte lineage. The bacterial cell wall components muramyl dipeptide and lipopolysaccharide induced the production of the interleukin-1 family of pro-inflammatory cytokines in IPLuM. Phagocytotic activity was also detected by time-lapse fluorescence imaging of live cells when IPLuM were cultured in the presence of pHrodo dye-conjugated E. coli BioParticles. It is worth noting that IPLuM are susceptible to African swine fever virus infection and support the virus' efficient replication in vitro. Taken together, the IPLuM cell line may be a useful model for investigating host-agent interactions in the respiratory microenvironments of the porcine lung.

7.
Animals (Basel) ; 12(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36428390

RESUMEN

Reduced productivity caused by infections, particularly respiratory diseases, is a serious problem in pig farming. We have previously reported polymorphisms in porcine pattern recognition receptor genes affecting molecular functions and demonstrated that the 2197A/C polymorphism in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene influences porcine circovirus 2-induced mortality. Here, we investigated how these polymorphisms affect respiratory disease-induced lesions, using samples from a slaughterhouse dealing with pigs from two farms. Lung lesions were evaluated using two scoring systems, Goodwin (GW) and slaughterhouse pleuritis evaluation system (SPES), to determine the influence of Mycoplasma hyopneumoniae (Mhp) and Actinobacillus pleuropneumoniae (App), respectively. SPES scores were significantly higher when the 1205T allele of Toll-like receptor 5 (TLR5-1205T), rather than TLR5-1205C, was present. On the farm with more severe Mhp invasion, lower GW lesion scores were significantly associated with the presence of the NOD-like receptor family pyrin domain containing 3 (NLRP3)-2906G allele; where App invasion was worse, lower SPES scores were significantly associated with the presence of the NOD2-2197C allele. Combinations of polymorphisms in pattern recognition receptor genes can therefore be utilized for breeding for resistance against respiratory diseases in pigs. DNA markers of these polymorphisms can thus be used to improve productivity by reducing respiratory diseases due to bacterial pathogens in pig livestock.

8.
Front Vet Sci ; 9: 919077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923820

RESUMEN

Macrophages are a heterogeneous population of cells that are present in all vertebrate tissues. They play a key role in the innate immune system, and thus, in vitro cultures of macrophages provide a valuable model for exploring their tissue-specific functions and interactions with pathogens. Porcine macrophage cultures are often used for the identification and characterization of porcine viral pathogens. Recently, we have developed a simple and efficient method for isolating primary macrophages from the kidneys and livers of swine. Here, we applied this protocol to fetal porcine intestinal tissues and demonstrated that porcine intestinal macrophages (PIM) can be isolated from mixed primary cultures of porcine small intestine-derived cells. Since the proliferative capacity of primary PIM is limited, we attempted to immortalize them by transferring the SV40 large T antigen and porcine telomerase reverse transcriptase genes using lentiviral vectors. Consequently, immortalized PIM (IPIM) were successfully generated and confirmed to retain various features of primary PIM. We further revealed that IPIM are susceptible to infection by the African swine fever virus and the porcine reproductive and respiratory syndrome virus and support their replication. These findings suggest that the IPIM cell line is a useful tool for developing in vitro models that mimic the intestinal mucosal microenvironments of swine, and for studying the interactions between porcine pathogens and host immune cells.

9.
Biosci Biotechnol Biochem ; 86(8): 1031-1040, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35612987

RESUMEN

The basidiomycetous yeast Pseudozyma antarctica, which has multiple auxotrophic markers, was constructed, without inserting a foreign gene, as the host strain for the introduction of multiple useful genes. P. antarctica was more resistant to ultraviolet (UV) irradiation than the model yeast Saccharomyces cerevisiae, and a Paura3 mutant (C867T) was obtained after 3 min of UV exposure. A uracil-auxotrophic marker (URA3) recycling system developed in ascomycetous yeasts and fungi was applied to the P. antarctica Paura3 strain. The PaLYS12 and PaADE2 loci were disrupted via site-directed homologous recombination of PaURA3 (pop-in), followed by the removal of PaURA3 (pop-out). In the obtained double auxotrophic strain (Palys12Δ, Paura3), PaADE2 was further disrupted, and PaURA3 was removed to obtain the triple auxotrophic strain PGB800 (Paura3, Palys12Δ, Paade2Δ). The whole-genome sequence of the PGB800 strain did not contain foreign genes used for genetic manipulation and disrupted PaADE2 and PaLYS12, and removed PaURA3, as planned.


Asunto(s)
Basidiomycota , Ustilaginales , Saccharomyces cerevisiae/genética , Uracilo , Ustilaginales/genética
10.
Genes (Basel) ; 12(9)2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34573406

RESUMEN

The nucleotide oligomerization domain (NOD)-like receptor 2 (NOD2) is an intracellular pattern recognition receptor that detects components of peptidoglycans from bacterial cell walls. NOD2 regulates bowel microorganisms, provides resistance against infections such as diarrhea, and reduces the risk of inflammatory bowel diseases in humans and mice. We previously demonstrated that a specific porcine NOD2 polymorphism (NOD2-2197A > C) augments the recognition of peptidoglycan components. In this study, the relationships between porcine NOD2-2197A/C genotypes affecting molecular functions and symptoms in a porcine circovirus 2b (PCV2b)-spreading Duroc pig population were investigated. The NOD2 allele (NOD2-2197A) with reduced recognition of the peptidoglycan components augmented the mortality of pigs at the growing stage in the PCV2b-spreading population. Comparison of NOD2 allele frequencies in the piglets before and after invasion of PCV2b indicated that the ratio of NOD2-2197A decreased in the population after the PCV2b epidemic. This data indicated that functional differences caused by NOD2-2197 polymorphisms have a marked impact on pig health and livestock productivity. We suggest that NOD2-2197CC is a PCV2 disease resistant polymorphism, which is useful for selective breeding by reducing mortality and increasing productivity.


Asunto(s)
Infecciones por Circoviridae , Resistencia a la Enfermedad/genética , Proteína Adaptadora de Señalización NOD2/genética , Porcinos/genética , Animales , Proteínas de la Cápside/genética , Infecciones por Circoviridae/genética , Infecciones por Circoviridae/mortalidad , Infecciones por Circoviridae/patología , Infecciones por Circoviridae/transmisión , Circovirus/genética , Circovirus/inmunología , Circovirus/patogenicidad , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Interacciones Huésped-Patógeno/genética , Masculino , Filogenia , Polimorfismo de Nucleótido Simple , Porcinos/virología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/mortalidad , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/transmisión
11.
Sci Rep ; 11(1): 15823, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349215

RESUMEN

Identification of a quantitative trait locus (QTL) related to a chronic respiratory disease such as Mycoplasmal pneumonia of swine (MPS) and immune-related traits is important for the genetic improvement of disease resistance in pigs. The objective of this study was to detect a novel QTL for a total of 22 production, respiratory disease, and immune-related traits in Landrace pigs. A total of 874 Landrace purebred pigs, which were selected based on MPS resistance, were genotyped using the Illumina PorcineSNP60 BeadChip. We performed single nucleotide polymorphism (SNP)-based and haplotype-based genome-wide association studies (GWAS) to detect a novel QTL and to evaluate the possibility of a pleiotropic QTL for these traits. SNP-based GWAS detected a total of six significant regions in backfat thickness, ratio of granular leucocytes to lymphatic cells, plasma concentration of cortisol at different ages, and complement alternative pathway activity in serum. The significant region detected by haplotype-based GWAS was overlapped across the region detected by SNP-based GWAS. Most of these detected QTL regions were novel regions with some candidate genes located in them. With regard to a pleiotropic QTL among traits, only three of these detected QTL regions overlapped among traits, and many detected regions independently affected the traits.


Asunto(s)
Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Sistema Inmunológico/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Reproducción , Enfermedades Respiratorias/genética , Animales , Haplotipos , Fenotipo , Enfermedades Respiratorias/patología , Porcinos
12.
J Vet Med Sci ; 83(9): 1407-1415, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34321379

RESUMEN

We have previously generated Large White pigs with high immune competence using a selection strategy based on phagocytic activity (PA), capacity of alternative complement pathway, and antibody response after vaccination against swine erysipelas. In this study, to identify the genetic changes caused by the immune selection pressure, we compared gene expression and polymorphisms in the promoter region between pigs subjected to the immune selection (immune-selected pigs) and those that were not (non-selected pigs). After lipid A stimulation, using a microarray analysis, 37 genes related to immune function and transcription factor activity showed a greater than three-fold difference in expression between macrophages derived from immune-selected and non-selected pigs. We further performed a polymorphic analysis of the promoter region of the differentially expressed genes, and elucidated the predominant promoter-types in the immune-selected and non-selected pigs, respectively, in the genes encoding ribonuclease L (RNASEL), sterile α motif and histidine-aspartate domain containing deoxynucleoside triphosphate triphosphohydrolase 1, signal transducer and activator of transcription 3, and tripartite motif containing 21. Analysis of the association between these promoter genotypes and the immune phenotypes revealed that the immune-selected promoter-type in RNASEL was associated with increased PA and was inherited recessively. Considering that RNASEL has been reported to be involved in antimicrobial immune response of mice, it may be possible to enhance the PA of macrophages and improve disease resistance in pig populations using RNASEL promoter-type as a DNA marker for selection.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos , Animales , Expresión Génica , Ratones , Fenotipo , Regiones Promotoras Genéticas , Porcinos
13.
Front Immunol ; 12: 652923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163470

RESUMEN

Previously, we constructed a library of Ligilactobacillus salivarius strains from the intestine of wakame-fed pigs and reported a strain-dependent capacity to modulate IFN-ß expression in porcine intestinal epithelial (PIE) cells. In this work, we further characterized the immunomodulatory activities of L. salivarius strains from wakame-fed pigs by evaluating their ability to modulate TLR3- and TLR4-mediated innate immune responses in PIE cells. Two strains with a remarkable immunomodulatory potential were selected: L. salivarius FFIG35 and FFIG58. Both strains improved IFN-ß, IFN-λ and antiviral factors expression in PIE cells after TLR3 activation, which correlated with an enhanced resistance to rotavirus infection. Moreover, a model of enterotoxigenic E. coli (ETEC)/rotavirus superinfection in PIE cells was developed. Cells were more susceptible to rotavirus infection when the challenge occurred in conjunction with ETEC compared to the virus alone. However, L. salivarius FFIG35 and FFIG58 maintained their ability to enhance IFN-ß, IFN-λ and antiviral factors expression in PIE cells, and to reduce rotavirus replication in the context of superinfection. We also demonstrated that FFIG35 and FFIG58 strains regulated the immune response of PIE cells to rotavirus challenge or ETEC/rotavirus superinfection through the modulation of negative regulators of the TLR signaling pathway. In vivo studies performed in mice models confirmed the ability of L. salivarius FFIG58 to beneficially modulate the innate immune response and protect against ETEC infection. The results of this work contribute to the understanding of beneficial lactobacilli interactions with epithelial cells and allow us to hypothesize that the FFIG35 or FFIG58 strains could be used for the development of highly efficient functional feed to improve immune health status and reduce the severity of intestinal infections and superinfections in weaned piglets.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Ligilactobacillus salivarius/inmunología , Probióticos/administración & dosificación , Infecciones por Rotavirus/veterinaria , Sobreinfección/veterinaria , Porcinos/inmunología , Alimentación Animal/microbiología , Animales , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica/inmunología , Escherichia coli Enterotoxigénica/patogenicidad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Femenino , Inmunidad Innata , Mucosa Intestinal/microbiología , Ratones , Poli I-C/administración & dosificación , Poli I-C/inmunología , Rotavirus/inmunología , Rotavirus/patogenicidad , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Sobreinfección/inmunología , Sobreinfección/microbiología , Sobreinfección/prevención & control , Porcinos/microbiología , Undaria/inmunología , Destete
14.
In Vitro Cell Dev Biol Anim ; 57(1): 10-16, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33447967

RESUMEN

In our previous study, we established a unique porcine macrophage cell line, immortalized porcine kidney-derived macrophages (IPKM). The purpose of the present study was to further elucidate the characteristics of IPKM. CD163 is a scavenger receptor for the hemoglobin-haptoglobin complex and is used as a phenotypic marker of anti-inflammatory M2 macrophages. The expression of CD163 is enhanced by dexamethasone (DEX), a potent steroidal anti-inflammatory drug, in human and rodent macrophages in vitro. Therefore, we investigated the effects of DEX on CD163 expression in porcine IPKM. Treatment with DEX markedly enhanced CD163 expression in the IPKM. In addition, we found that SB203580, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), blocked the effects of DEX, suggesting that the p38 MAPK signaling pathway is involved in the regulation of the DEX-induced enhancement of CD163 expression. Since CD163 is considered to be a putative receptor for the porcine reproductive and respiratory syndrome virus (PRRSV), the effects of DEX on the infection of IPKM by PRRSV were evaluated. Although the IPKM were susceptible to infection by the Fostera PRRSV vaccine strain, DEX treatment did not affect the propagation of the virus in the IPKM. This suggests that the DEX-induced enhancement of CD163 expression alone is not sufficient to facilitate the infection of IPKM by PRRSV.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Dexametasona/farmacología , Riñón/patología , Macrófagos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Butadienos/farmacología , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/virología , Nitrilos/farmacología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Piridinas/farmacología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Porcinos
15.
J Virol Methods ; 288: 114026, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33238183

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) displays restricted tropism to porcine alveolar macrophages in nature. Meanwhile, non-porcine cell lines derived from African green monkey kidney cell lines are permissive to PRRSV, resulting in their widespread use in PRRSV research. Furthermore, genetically modified cell lines expressing receptors targeted by PRRSV have been established. We previously established porcine immortalized kidney-derived macrophages (IPKMs) that maintained typical macrophage function. In the present study, we demonstrated the advantages of IPKMs for PRRSV research. IPKMs expressed receptors for PRRSV such as CD163 and CD169. The efficiency of virus isolation from field biological samples was higher for IPKMs than for MARC-145 cells. Five different clusters of North American type PRRSV were propagated in IPKMs. Four field strains continuously produced progeny viruses during 10 continuous passages. The efficiency of virus isolation from field biological samples and continuous progeny virus production in the sequential passages using IPKMs indicated that these cells are good vessels for PRRSV research.


Asunto(s)
Macrófagos Alveolares , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Línea Celular , Chlorocebus aethiops , Riñón , Porcinos , Replicación Viral
16.
Front Immunol ; 11: 863, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477350

RESUMEN

CLEC12A has been proposed as a suitable target for delivering antigen to dendritic cells (DCs) to enhance vaccine efficacy both in human and mouse. In this study, we have characterized the porcine homolog of CLEC12A (poCLEC12A). Using new monoclonal antibodies (mAb), raised against its ectodomain, poCLEC12A was found to be expressed on alveolar macrophages, blood conventional type 1 and type 2 DCs and plasmacytoid DCs, but not on monocytes, T cells, B cells or NK cells, in contrast to its human and murine homologs. Western blot analysis showed that in alveolar macrophages this receptor is expressed both as a monomer and a dimer. After binding to DCs, anti- poCLEC12A mAb was efficiently internalized. No significant changes were observed in TNFα or IFNα secretion by plasmacytoid DCs stimulated with either CpGs (ODN2216) or polyinosinic-polycytidylic acid (poly I:C), upon incubation with mAb. These results provide the basis for future investigations aimed to assess the ability of anti-poCLEC12A mAbs to improve vaccine efficacy by targeting antigen to DCs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Células Dendríticas/inmunología , Lectinas Tipo C/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Clonación Molecular , Cricetulus , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Terapia Molecular Dirigida , Oligodesoxirribonucleótidos/genética , Poli I-C/inmunología , Proteínas Recombinantes de Fusión/genética , Porcinos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/genética , Transcriptoma
17.
Dev Comp Immunol ; 111: 103767, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32535044

RESUMEN

CLEC12B is a C-type lectin-like receptor expressed on myeloid cells. In this study, we have characterized the porcine homologue of CLEC12B (poCLEC12B). To this end, we have generated constructs encoding a c-myc tagged version of the whole receptor, or its ectodomain fused to the Fc portion of human IgG1, from a cDNA clone obtained from an alveolar macrophage library, and raised monoclonal antibodies (mAb) against this molecule. Using these mAbs, poCLEC12B was found to be expressed on alveolar macrophages and, at lower levels, on blood conventional type 1 dendritic cells (cDC1) and plasmacytoid DCs. No binding was detected on monocytes, monocyte-derived macrophages or monocyte-derived DCs. Engagement of CLEC12B on alveolar macrophages with mAbs had no apparent effect on cytokine production (TNF-α, IL-8) induced by LPS. These results provide the basis for future investigations aimed to assess the role of poCLEC12B in different microbial infections and to evaluate its potential in vaccination strategies targeting DCs.


Asunto(s)
Células Dendríticas/inmunología , Lectinas Tipo C/inmunología , Macrófagos Alveolares/inmunología , Receptores Mitogénicos/inmunología , Porcinos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Circulación Sanguínea , Células Cultivadas , Humanos , Interleucina-8/metabolismo , Lectinas Tipo C/genética , Lipopolisacáridos/inmunología , Activación de Macrófagos , Receptores Mitogénicos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
18.
Water Sci Technol ; 81(3): 456-465, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32385199

RESUMEN

A full-scale swine-wastewater activated sludge treatment plant that contains naturally enriched anammox biofilms was investigated for 2 years. Red biofilm in this system included Planctomycetes at a maximum of 62.5% of the total bacteria diversity, including Candidatus Jettenia and Candidatus Brocadia. The plant was operated with an influent containing 1,104 ± 513 mg/L biochemical oxygen demand (BOD) and 629 ± 198 mg/L total nitrogen (TN) (BOD/N of 1.78 ± 0.58) at a volumetric BOD loading rate of 0.32 ± 0.12 kg/m3/d. Notwithstanding drastically varying influent concentrations, BOD removal efficiency was stable at 95 ± 4%. However, TN removal fluctuated at 75 ± 14%. Dissolved oxygen (DO) concentrations in the aeration tank were 0.06-2.0 mg/L. DO concentration greatly affected nitrogen removal, e.g. when DO was lower than 0.3 mg/L, total inorganic nitrogen removal was 61 ± 14% (≤20 °C), 78 ± 16% (20-30 °C), and 75 ± 12% (≥30 °C), whereas at higher DO concentrations, removal rates were 47 ± 13%, 55 ± 16%, and 68%, respectively. As BOD concentration in the influent was limited compared to nitrogen concentration, nitrogen was likely removed by simultaneous nitrification, anammox, and denitrification (SNAD) under microaerobic conditions. Maintaining low DO concentrations would therefore be a simple method to improve nitrogen removal during SNAD processes for swine-wastewater treatment with fluctuating influent.


Asunto(s)
Desnitrificación , Nitrificación , Animales , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Porcinos , Aguas Residuales
19.
Anim Sci J ; 91(1): e13313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31755175

RESUMEN

Ammonia removal is achieved partly by absorption and nitrification in biofilters, resulting in the accumulation of nitrogen and the necessity of treating the effluent water. We investigated the effects of thiosulfate addition to a biofilter containing pumice tuff for ammonia and nitrogen removal in a laboratory-scale experiment. The addition of thiosulfate to the circulating water led to a decreased nitrate and nitrite along with an increase of sulfate. The inorganic nitrogen in the circulating water decreased by up to 44% with thiosulfate addition compared to without thiosulfate. Batch experiments revealed that denitrification activity decreased exponentially along with increases in dissolved oxygen; however, approximately 30% of denitrification activity was maintained at dissolved oxygen concentration of 3.3 mg/L. Metabarcoding of 16S rRNA genes indicated that the genus Thiobacillus had a relative abundance of 0.002%-0.016% of total bacteria in the biofilter packing material. The circulating water pH was decreased below 5 with sulfur oxidation, and ammonium was accumulated without pH control resulting in a decrease in the relative abundance of the family Nitrosomonadaceae. Its relative abundance increased with control of pH to near neutral, indicating that ammonia-oxidizing activity could be maintained by adjusting pH. Thiosulfate addition could stimulate nitrogen removal by sulfur-dependent denitrification in biofiltration systems.


Asunto(s)
Filtros de Aire , Amoníaco , Desnitrificación , Nitrógeno , Silicatos , Tiosulfatos , Aguas Residuales , Concentración de Iones de Hidrógeno , Nitratos , Nitritos , Nitrosomonadaceae , ARN Ribosómico 16S , Thiobacillus
20.
Cells ; 8(8)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416116

RESUMEN

Peptidoglycan recognition proteins (PGLYRPs) are a family of pattern recognition receptors (PRRs) that are able to induce innate immune responses through their binding to peptidoglycan (PGN), lipopolysaccharide, or lipoteichoic acid, or by interacting with other PRR-ligands. Recently, progress has been made in understanding the immunobiology of PGLYRPs in human and mice, however, their functions in livestock animals have been less explored. In this study, we characterized the expression patterns of PGLYRPs in porcine intestinal epithelial (PIE) cells and antigen-presenting cells (APCs) and their modulation by the interactions of host cells with PRR-ligands and non-viable immunomodulatory probiotics referred to as paraimmunobiotics. We demonstrated that PGLYRP-1, -2, -3, and -4 are expressed in PIE cells and APCs from Peyer's patches, being PGLYPR-3 and -4 levels higher than PGLYRP-1 and -2. We also showed that PGLYRPs expression in APCs and PIE cells can be modulated by different PRR agonists. By using knockdown PIE cells for TLR2, TLR4, NOD1, and NOD2, or the four PGLYRPs, we demonstrated that PGLYRPs expressions would be required for activation and functioning of TLR2, TLR4, NOD1, and NOD2 in porcine epitheliocytes, but PGLYRPs activation would be independent of those PRR expressions. Importantly, we reported for the first time that PGLYRPs expression can be differentially modulated by paraimmunobiotic bifidobacteria in a strain-dependent manner. These results provide evidence for the use of paraimmunobiotic bifidobacteria as an alternative for the improvement of resistance to intestinal infections or as therapeutic tools for the reduction of the severity of inflammatory damage in diseases in which a role of PGLYRPs-microbe interaction has been demonstrated.


Asunto(s)
Bifidobacterium/fisiología , Proteínas Portadoras/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Porcinos/inmunología , Porcinos/microbiología , Animales , Células Presentadoras de Antígenos/inmunología , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Bazo/citología , Bazo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA