Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35267606

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix (ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regulators of cellular metabolism and are upregulated in different cancers; however, their role in PDAC desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We generated a hypernetwork model from these data to investigate whether a causal relationship exists between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was robust, established by iterated sampling, direct path analysis, validation by an independent dataset, and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia via associations with ECMs, opening novel treatment pathways to improve patient survival.

2.
Drug Metab Dispos ; 47(3): 215-226, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593544

RESUMEN

In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Tasa de Depuración Metabólica , Transportadores de Anión Orgánico/metabolismo , Preparaciones Farmacéuticas/metabolismo , Especificidad de la Especie , Animales , Perros , Hepatocitos/metabolismo , Humanos , Infusiones Intravenosas , Hígado/citología , Hígado/metabolismo , Masculino , Modelos Animales , Modelos Biológicos , Preparaciones Farmacéuticas/administración & dosificación
3.
Drug Metab Dispos ; 46(7): 989-1000, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720472

RESUMEN

This work explores the utility of the cynomolgus monkey as a preclinical model to predict hepatic uptake clearance mediated by organic anion transporting polypeptide (OATP) transporters. Nine OATP substrates (rosuvastatin, pravastatin, repaglinide, fexofenadine, cerivastatin, telmisartan, pitavastatin, bosentan, and valsartan) were investigated in plated cynomolgus monkey and human hepatocytes. Total uptake clearance and passive diffusion were measured in vitro from initial rates in the absence and presence of the OATP inhibitor rifamycin SV , respectively. Total uptake clearance values in plated hepatocytes ranged over three orders of magnitude in both species, with a similar rank order and good agreement in the relative contribution of active transport to total uptake between cynomolgus monkey and human. In vivo hepatic clearance for these nine drugs was determined in cynomolgus monkey after intravenous dosing. Hepatic clearances showed a range similar to human parameters and good predictions from respective hepatocyte parameters (with 2.7- and 3.8-fold bias on average, respectively). The use of cross-species empirical scaling factors (determined from cynomolgus monkey data either as the data set average or individual drug values) improved prediction (less bias, better concordance) of human hepatic clearance from human hepatocyte data alone. In vitro intracellular binding in hepatocytes also correlated well between species. It is concluded that the minimal species differences observed for the current data set between cynomolgus monkey and human hepatocyte uptake, both in vitro and in vivo, support future use of this preclinical model to delineate drug hepatic uptake and enable prediction of human in vivo intrinsic hepatic clearance.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Tasa de Depuración Metabólica/fisiología , Transportadores de Anión Orgánico/metabolismo , Preparaciones Farmacéuticas/metabolismo , Adulto , Animales , Transporte Biológico/fisiología , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Cinética , Macaca fascicularis , Péptidos/metabolismo
4.
J Pharmacol Exp Ther ; 365(3): 688-699, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29643253

RESUMEN

Hepatic organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are clinically relevant transporters associated with significant drug-drug interactions (DDIs) and safety concerns. Given that OATP1Bs in cynomolgus monkey share >90% degree of gene and amino acid sequence homology with human orthologs, we evaluated the in vitro-in vivo translation of OATP1B-mediated DDI risk using this preclinical model. In vitro studies using plated cynomolgus monkey hepatocytes showed active uptake Km values of 2.0 and 3.9 µM for OATP1B probe substrates, pitavastatin and rosuvastatin, respectively. Rifampicin inhibited pitavastatin and rosuvastatin active uptake in monkey hepatocytes with IC50 values of 3.0 and 0.54 µM, respectively, following preincubation with the inhibitor. Intravenous pharmacokinetics of 2H4-pitavastatin and 2H6-rosuvastatin (0.2 mg/kg) and the oral pharmacokinetics of cold probes (2 mg/kg) were studied in cynomolgus monkeys (n = 4) without or with coadministration of single oral ascending doses of rifampicin (1, 3, 10, and 30 mg/kg). A rifampicin dose-dependent reduction in i.v. clearance of statins was observed. Additionally, oral pitavastatin and rosuvastatin plasma exposure increased up to 19- and 15-fold at the highest dose of rifampicin, respectively. Use of in vitro IC50 obtained following 1 hour preincubation with rifampicin (0.54 µM) predicted correctly the change in mean i.v. clearance and oral exposure of statins as a function of mean unbound maximum plasma concentration of rifampicin. This study demonstrates quantitative translation of in vitro OATP1B IC50 to predict DDIs using cynomolgus monkey as a preclinical model and provides further confidence in application of in vitro hepatocyte data for the prediction of clinical OATP1B-mediated DDIs.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Quinolinas/farmacología , Rosuvastatina Cálcica/farmacología , Administración Oral , Animales , Transporte Biológico , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Células HEK293 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Macaca fascicularis , Masculino , Quinolinas/administración & dosificación , Quinolinas/metabolismo , Quinolinas/farmacocinética , Rosuvastatina Cálcica/administración & dosificación , Rosuvastatina Cálcica/metabolismo , Rosuvastatina Cálcica/farmacocinética , Distribución Tisular
5.
Mol Pharm ; 14(4): 1033-1046, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28252969

RESUMEN

Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 µM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.


Asunto(s)
Lisosomas/metabolismo , Macrófagos Alveolares/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Anciano , Animales , Línea Celular , Claritromicina/administración & dosificación , Simulación por Computador , Femenino , Humanos , Imipramina/administración & dosificación , Macrófagos Alveolares/efectos de los fármacos , Masculino , Persona de Mediana Edad , Fosfolípidos/metabolismo , Ratas , Distribución Tisular
6.
Pharm Res ; 32(12): 3937-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26224396

RESUMEN

PURPOSE: To assess accumulation and lysosomal sequestration of 9 drugs used in respiratory indications (plus imipramine as positive control) in the alveolar macrophage (AM) cell line NR8383. METHODS: For all drugs, uptake at 5 µM was investigated at 37 and 4°C to delineate active uptake and passive diffusion processes. Accumulation of basic clarithromycin, formoterol and imipramine was also assessed over 0.1-100 µM concentration range. Lysosomal sequestration was investigated using ammonium chloride (NH4Cl), monensin and nigericin. Impact of lysosomal sequestration on clarithromycin accumulation kinetics was investigated. RESULTS: Both cell-to-medium concentration ratio (Kp) and uptake clearance (CLuptake) ranged > 400-fold for the drugs investigated. The greatest Kp was observed for imipramine (391) and clarithromycin (82), in contrast to no accumulation seen for terbutaline. A concentration-dependent accumulation was evident for the basic drugs investigated. Imipramine and clarithromycin Kp and CLuptake were reduced by 59-85% in the presence of NH4Cl and monensin/nigericin, indicating lysosomal accumulation, whereas lysosomal sequestration was not pronounced for the other 8 respiratory drugs. Clarithromycin uptake rate was altered by NH4Cl, highlighting the impact of subcellular distribution on accumulation kinetics. CONCLUSIONS: This study provides novel evidence of the utility of NR8383 for investigating accumulation and lysosomal sequestration of respiratory drugs in AMs.


Asunto(s)
Lisosomas/metabolismo , Macrófagos Alveolares/metabolismo , Preparaciones Farmacéuticas/metabolismo , Inhibidores de Captación Adrenérgica/metabolismo , Antiinfecciosos/metabolismo , Broncodilatadores/metabolismo , Línea Celular , Claritromicina/metabolismo , Humanos , Imipramina/metabolismo , Macrófagos Alveolares/citología , Terbutalina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA