Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-18001915

RESUMEN

Recordings have been performed with a CMOS-based microelectrode array (MEA) featuring 11'016 metal electrodes and 126 channels, each of which comprises recording and stimulation electronics for extracellular, bidirectional communication with electrogenic cells. The important features of the device include (i) high spatial resolution at (sub) cellular level with 3'200 electrodes per mm(2) (diameter 7 microm, pitch 18 microm), (ii) a reconfigurable routing of the electrodes to the 126 channels, and (iii) low noise levels. Recordings from neonatal rat cardiomyocytes forming confluent layers and microtissues are shown. Moreover, signals from dissociated rat hippocampal neurons and from neurons in an acute cerebellar slice preparation are presented.


Asunto(s)
Dispositivos Laboratorio en un Chip , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Animales , Pollos , Electrodos , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Procedimientos Analíticos en Microchip/métodos , Microelectrodos , Ratas , Ratas Long-Evans
2.
Artículo en Inglés | MEDLINE | ID: mdl-18003402

RESUMEN

A monolithic microsystem in CMOS (complementary metal oxide semiconductor) technology is presented that provides bidirectional communication (stimulation and recording) between standard microelectronics and cultured electrogenic cells. The 128-electrode chip can be directly used as a substrate for cell culturing. It features circuitry units for stimulation and immediate cell signal treatment near each electrode. In addition, it provides on-chip A/D conversion as well as a digital interface so that a fast interaction is possible at good signal quality. Spontaneous and stimulated electrical activity recordings with neuronal and cardiac cell cultures will be presented. The system can be used to, e.g., study the behavior and development of neural networks in vitro, to reveal the effects of neuronal plasticity and to study network activity in response to pharmacological treatments.


Asunto(s)
Potenciales de Acción/fisiología , Técnicas de Cultivo de Célula/instrumentación , Estimulación Eléctrica/instrumentación , Electrónica/instrumentación , Microelectrodos , Neuronas/fisiología , Procesamiento de Señales Asistido por Computador/instrumentación , Amplificadores Electrónicos , Conversión Analogo-Digital , Animales , Biotecnología/instrumentación , Comunicación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Estimulación Eléctrica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Miocitos Cardíacos/fisiología , Ratas
3.
J Neurosci Methods ; 164(1): 93-106, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17540452

RESUMEN

We report on the system integration of a CMOS chip that is capable of bidirectionally communicating (stimulation and recording) with electrogenic cells such as neurons or cardiomyocytes and that is targeted at investigating electrical signal propagation within cellular networks in vitro. The overall system consists of three major subunits: first, the core component is a 6.5 mm x 6.5 mm CMOS chip, on top of which the cells are cultured. It features 128 bidirectional electrodes, each equipped with dedicated analog filters and amplification stages and a stimulation buffer. The electrodes are sampled at 20 kHz with 8-bit resolution. The measured input-referred circuitry noise is 5.9 microV root mean square (10 Hz to 100 kHz), which allows to reliably detect the cell signals ranging from 1 mVpp down to 40 microVpp. Additionally, temperature sensors, a digital-to-analog converter for stimulation, and a digital interface for data transmission are integrated. Second, there is a reconfigurable logic device, which provides chip control, event detection, data buffering and an USB interface, capable of processing the 2.56 million samples per second. The third element includes software that is running on a standard PC performing data capturing, processing, and visualization. Experiments involving the stimulation of neurons with two different spatio-temporal patterns and the recording of the triggered spiking activity have been carried out. The response patterns have been successfully classified (83% correct) with respect to the different stimulation patterns. The advantages over current microelectrode arrays, as has been demonstrated in the experiments, include the capability to stimulate (voltage stimulation, 8 bit, 60 kHz) spatio-temporal patterns on arbitrary sets of electrodes and the fast stimulation reset mechanism that allows to record neuronal signals on a stimulating electrode 5 ms after stimulation (instantaneously on all other electrodes). Other advantages of the overall system include the small number of needed electrical connections due to the digital interface and the short latency time that allows to initiate a stimulation less than 2 ms after the detection of an action potential in closed-loop configurations.


Asunto(s)
Electrónica Médica/instrumentación , Electrofisiología/instrumentación , Red Nerviosa/fisiología , Neuronas/fisiología , Neurofisiología/instrumentación , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Electrónica Médica/métodos , Electrofisiología/métodos , Microelectrodos/normas , Microelectrodos/tendencias , Red Nerviosa/citología , Neuronas/citología , Neurofisiología/métodos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Procesamiento de Señales Asistido por Computador/instrumentación , Programas Informáticos
4.
Biosens Bioelectron ; 22(11): 2546-53, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17097869

RESUMEN

A high degree of connectivity and the coordinated electrical activity of neural cells or networks are believed to be the reason that the brain is capable of highly sophisticated information processing. Likewise, the effectiveness of an animal heart largely depends on such coordinated cell activity. To advance our understanding of these complex biological systems, high spatiotemporal-resolution techniques to monitor the cell electrical activity and an ideally seamless interaction between cells and recording devices are desired. Here we present a monolithic microsystem in complementary metal oxide semiconductor (CMOS) technology that provides bidirectional communication (stimulation and recording) between standard electronics technology and cultured electrogenic cells. The microchip can be directly used as a substrate for cell culturing, it features circuitry units per electrode for stimulation and immediate cell signal treatment, and it provides on-chip signal transformation as well as a digital interface so that a very fast, almost real-time interaction (2 ms loop time from event recognition to, e.g., a defined stimulation) is possible at remarkable signal quality. The corresponding spontaneous and stimulated electrical activity recordings with neuronal and cardiac cell cultures will be presented. The system can be used to, e.g., study the development of neural networks, reveal the effects of neuronal plasticity and study cellular or network activity in response to pharmacological treatments.


Asunto(s)
Potenciales de Acción/fisiología , Amplificadores Electrónicos , Estimulación Eléctrica/instrumentación , Microelectrodos , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp/instrumentación , Animales , Células Cultivadas , Pollos , Estimulación Eléctrica/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Ratas , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA