Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 23(21): 215704, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551877

RESUMEN

Analysis of nanoparticles is often challenging especially when they are embedded in a matrix. Hence, we have used laser-assisted atom probe tomography (APT) to analyze the Au nanoclusters synthesized in situ using ion-beam implantation in a single crystal MgO matrix. APT analysis along with scanning transmission electron microscopy and energy dispersive spectroscopy (STEM-EDX) indicated that the nanoparticles have an average size ~8-12 nm. While it is difficult to analyze the composition of individual nanoparticles using STEM, APT analysis can give three-dimensional compositions of the same. It was shown that the maximum Au concentration in the nanoparticles increases with increasing particle size, with a maximum Au concentration of up to 50%.


Asunto(s)
Oro/química , Imagenología Tridimensional/métodos , Microscopía de Sonda de Barrido/métodos , Técnicas de Sonda Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Tomografía/métodos , Ensayo de Materiales/métodos , Conformación Molecular , Tamaño de la Partícula
2.
Ultramicroscopy ; 111(3): 207-11, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21333858

RESUMEN

The electronic characteristics of semiconductor-based devices are greatly affected by the local dopant atom distribution. In Mg-doped GaN, the clustering of dopants at structural defects has been widely reported, and can significantly affect p-type conductivity. We have studied a Mg-doped AlGaN/GaN superlattice using transmission electron microscopy (TEM) and atom probe tomography (APT). Pyramidal inversion domains were observed in the TEM and the compositional variations of the dopant atoms associated with those defects have been studied using APT. Rarely has APT been used to assess the compositional variations present due to structural defects in semiconductors. Here, TEM and APT are used in a complementary fashion, and the strengths and weaknesses of the two techniques are compared.

3.
Ultramicroscopy ; 107(9): 750-5, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17398008

RESUMEN

The use of a local electrode in atom probe tomography has enabled higher rates of data acquisition and increased field of view compared to other variants of three-dimensional atom probes, but specimen fracture can result in damage to the local electrode. Specimens and local electrodes were examined before and after analyses that resulted in specimen failure. Most specimens were found to be melted after failure and as a result, material was found deposited onto the surface of the local electrode. Material transfer from the specimen to the local electrode was verified by energy dispersive spectrometry in a scanning electron microscope. After the fracture of brittle materials, some remnants were found embedded in the local electrode. For either failure mode, it is likely that the primary specimen rupture produced a sharp protrusion on the specimen or local electrode and this triggered an electrical discharge or uncontrolled field emission that melted a portion of the specimen. The lifetime of the local electrode was found to be dependent on the shape and position of the debris from the specimen failure rather than the number of ions collected or the number of specimens characterized. Local electrodes with smaller apertures were found to be more susceptible to failure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...