Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Vis Comput Graph ; 30(7): 4390-4402, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38231803

RESUMEN

Efficient and accurate BRDF acquisition of real world materials is a challenging research problem that requires sampling millions of incident light and viewing directions. To accelerate the acquisition process, one needs to find a minimal set of sampling directions such that the recovery of the full BRDF is accurate and robust given such samples. In this article, we formulate BRDF acquisition as a compressed sensing problem, where the sensing operator is one that performs sub-sampling of the BRDF signal according to a set of optimal sample directions. To solve this problem, we propose the Fast and Robust Optimal Sampling Technique (FROST) for designing a provably optimal sub-sampling operator that places light-view samples such that the recovery error is minimized. FROST casts the problem of designing an optimal sub-sampling operator for compressed sensing into a sparse representation formulation under the Multiple Measurement Vector (MMV) signal model. The proposed reformulation is exact, i.e. without any approximations, hence it converts an intractable combinatorial problem into one that can be solved with standard optimization techniques. As a result, FROST is accompanied by strong theoretical guarantees from the field of compressed sensing. We perform a thorough analysis of FROST-BRDF using a 10-fold cross-validation with publicly available BRDF datasets and show significant advantages compared to the state-of-the-art with respect to reconstruction quality. Finally, FROST is simple, both conceptually and in terms of implementation, it produces consistent results at each run, and it is at least two orders of magnitude faster than the prior art.

2.
Data Brief ; 48: 109240, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383746

RESUMEN

The Swedish Civil Air Traffic Control (SCAT) dataset consists of 13 weeks of data collected from the area control in Sweden flight information region. The dataset consists of detailed data from almost 170,000 flights as well as airspace data and weather forecasts. The flight data includes system updated flight plans, clearances from air traffic control, surveillance data and trajectory prediction data. Each week of data is continuous but the 13 weeks are spread over one year to provide variations in weather and seasonal traffic patterns. The dataset does only include scheduled flights not involved in any incident reports. Sensitive data such as military and private flight has been removed. The SCAT dataset can be useful for any research related to air traffic control, e.g. analysis of transportation patterns, environmental impact, optimization and automation/AI.

3.
IEEE Trans Vis Comput Graph ; 28(7): 2602-2614, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33141672

RESUMEN

Evaluating the transmittance between two points along a ray is a key component in solving the light transport through heterogeneous participating media and entails computing an intractable exponential of the integrated medium's extinction coefficient. While algorithms for estimating this transmittance exist, there is a lack of theoretical knowledge about their behaviour, which also prevent new theoretically sound algorithms from being developed. For this purpose, we introduce a new class of unbiased transmittance estimators based on random sampling or truncation of a Taylor expansion of the exponential function. In contrast to classical tracking algorithms, these estimators are non-analogous to the physical light transport process and directly sample the underlying extinction function without performing incremental advancement. We present several versions of the new class of estimators, based on either importance sampling or Russian roulette to provide finite unbiased estimators of the infinite Taylor series expansion. We also show that the well known ratio tracking algorithm can be seen as a special case of the new class of estimators. Lastly, we conduct performance evaluations on both the central processing unit (CPU) and the graphics processing unit (GPU), and the results demonstrate that the new algorithms outperform traditional algorithms for heterogeneous mediums.

4.
IEEE J Biomed Health Inform ; 25(2): 325-336, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085623

RESUMEN

The high capacity of neural networks allows fitting models to data with high precision, but makes generalization to unseen data a challenge. If a domain shift exists, i.e. differences in image statistics between training and test data, care needs to be taken to ensure reliable deployment in real-world scenarios. In digital pathology, domain shift can be manifested in differences between whole-slide images, introduced by for example differences in acquisition pipeline - between medical centers or over time. In order to harness the great potential presented by deep learning in histopathology, and ensure consistent model behavior, we need a deeper understanding of domain shift and its consequences, such that a model's predictions on new data can be trusted. This work focuses on the internal representation learned by trained convolutional neural networks, and shows how this can be used to formulate a novel measure - the representation shift - for quantifying the magnitude of model-specific domain shift. We perform a study on domain shift in tumor classification of hematoxylin and eosin stained images, by considering different datasets, models, and techniques for preparing data in order to reduce the domain shift. The results show how the proposed measure has a high correlation with drop in performance when testing a model across a large number of different types of domain shifts, and how it improves on existing techniques for measuring data shift and uncertainty. The proposed measure can reveal how sensitive a model is to domain variations, and can be used to detect new data that a model will have problems generalizing to. We see techniques for measuring, understanding and overcoming the domain shift as a crucial step towards reliable use of deep learning in the future clinical pathology applications.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Neurales de la Computación
5.
IEEE Trans Vis Comput Graph ; 18(3): 447-62, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21301022

RESUMEN

We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA