Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(8): 6456-6494, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38574366

RESUMEN

Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.


Asunto(s)
ADN , Descubrimiento de Drogas , Interleucina-17 , Bibliotecas de Moléculas Pequeñas , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , ADN/metabolismo , ADN/química , Humanos , Animales , Relación Estructura-Actividad , Unión Proteica , Ratones
2.
Sci Rep ; 12(1): 14561, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028520

RESUMEN

Anti-IL17A therapies have proven effective for numerous inflammatory diseases including psoriasis, axial spondylitis and psoriatic arthritis. Modulating and/or antagonizing protein-protein interactions of IL17A cytokine binding to its cell surface receptors with oral therapies offers the promise to bring forward biologics-like efficacy in a pill to patients. We used an NMR-based fragment screen of recombinant IL17A to uncover starting points for small molecule IL17A antagonist discovery. By examining chemical shift perturbations in 2D [1H, 13C-HSQC] spectra of isotopically labeled IL17A, we discovered fragments binding the cytokine at a previously undescribed site near the IL17A C-terminal region, albeit with weak affinity (> 250 µM). Importantly this binding location was distinct from previously known chemical matter modulating cytokine responses. Subsequently through analog screening, we identified related compounds that bound symmetrically in this novel site with two copies. From this observation we employed a linking strategy via structure-based drug design and obtained compounds with increased binding affinity (< 50 nM) and showed functional inhibition of IL17A-induced cellular signaling (IC50~1 µM). We also describe a fluorescence-based probe molecule suitable to discern/screen for additional molecules binding in this C-terminal site.


Asunto(s)
Artritis Psoriásica , Espondiloartritis Axial , Interleucina-17 , Psoriasis , Citocinas , Diseño de Fármacos , Humanos , Interleucina-17/antagonistas & inhibidores
3.
J Biomol NMR ; 73(12): 675-685, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31541395

RESUMEN

Protein-based NMR spectroscopy has proven to be a very robust method for finding fragment leads to protein targets. However, one limitation of protein-based NMR is that the data acquisition and analysis can be time consuming. In order to streamline the scoring of protein-based NMR fragment screening data and the determination of ligand affinities using 2D NMR experiments we have developed a data analysis workflow based on principal component analysis (PCA) within the TREND NMR Pro software package. We illustrate this using four different proteins and sets of ligands which interact with these proteins over a range of affinities. Also, these PCA-based methods can be successfully applied even to systems where ligand binding to target proteins is in intermediate or even slow exchange on the NMR time scale. Finally, these methods will work for scoring of fragment binding data using protein spectra that are either highly overlapped or lower in resolution.


Asunto(s)
Descubrimiento de Drogas/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Análisis de Componente Principal/métodos , Ligandos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica
4.
J Med Chem ; 61(15): 6647-6657, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30004704

RESUMEN

IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,ß-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Histidina , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/química , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Conformación Proteica , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 28(10): 1708-1713, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29691138

RESUMEN

The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/química , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Histona Demetilasas con Dominio de Jumonji/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Relación Estructura-Actividad , Dominio Tudor
6.
Mol Cell ; 68(1): 89-103.e7, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28943313

RESUMEN

Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Discapacidades del Desarrollo/genética , Epigénesis Genética , Impresión Genómica , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , ARN Largo no Codificante/genética , Animales , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Eliminación de Gen , Genes Letales , Estudio de Asociación del Genoma Completo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/patología , Acetiltransferasa A N-Terminal/deficiencia , Acetiltransferasa E N-Terminal/deficiencia , Unión Proteica , ARN Largo no Codificante/metabolismo , Fase S/genética
7.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 3): 116-122, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28291746

RESUMEN

The rapid spread of the recent Zika virus (ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 of Zika virus (ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Šresolution from a crystal belonging to space group P21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein from Japanese encephalitis virus and suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/química , Proteínas no Estructurales Virales/química , Virus Zika/química , Zinc/química , Secuencias de Aminoácidos , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/metabolismo , Zinc/metabolismo
8.
Nat Chem Biol ; 13(3): 317-324, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28114273

RESUMEN

Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Línea Celular Tumoral , Cristalografía por Rayos X , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/química , Compuestos Heterocíclicos de 4 o más Anillos/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación/efectos de los fármacos , Modelos Moleculares , Estructura Molecular
9.
ACS Med Chem Lett ; 7(12): 1102-1106, 2016 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-27994746

RESUMEN

SETD8 is a histone H4-K20 methyltransferase that plays an essential role in the maintenance of genomic integrity during mitosis and in DNA damage repair, making it an intriguing target for cancer research. While some small molecule inhibitors for SETD8 have been reported, the structural binding modes for these inhibitors have not been revealed. Using the complex structure of the substrate peptide bound to SETD8 as a starting point, different natural and unnatural amino acid substitutions were tested, and a potent (Ki 50 nM, IC50 0.33 µM) and selective norleucine containing peptide inhibitor has been obtained.

10.
Nucleic Acids Res ; 40(11): 4841-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22362737

RESUMEN

Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore the role of DNA methyltransferases (DNMT) and ten eleven translocation (Tet) proteins in perpetuating these states after replication, and the molecular basis of their recognition by methyl-CpG-binding domain (MBD) proteins. Using recombinant proteins and modified double-stranded deoxyoligonucleotides, we show that DNMT1 prefers a hemi-methylated (M/C) substrate (by a factor of >60) over hemi-hydroxymethylated (H/C) and unmodified (C/C) sites, whereas both DNMT3A and DNMT3B have approximately equal activity on all three substrates (C/C, M/C and H/C). Binding of MBD proteins to methylated DNA inhibited Tet1 activity, suggesting that MBD binding may also play a role in regulating the levels of 5hmC. All five MBD proteins generally have reduced binding affinity for 5hmC relative to 5mC in the fully modified context (H/M versus M/M), though their relative abilities to distinguish the two varied considerably. We further show that the deamination product of 5hmC could be excised by thymine DNA glycosylase and MBD4 glycosylases regardless of context.


Asunto(s)
Citosina/análogos & derivados , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Replicación del ADN , 5-Metilcitosina/análogos & derivados , ADN (Citosina-5-)-Metiltransferasa 1 , Proteínas de Unión al ADN/metabolismo , Humanos , Pentoxil (Uracilo)/análogos & derivados , Pentoxil (Uracilo)/metabolismo , Timina ADN Glicosilasa/metabolismo
11.
J Mol Biol ; 416(3): 319-27, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22227394

RESUMEN

BIX-01294 and its analogs were originally identified and subsequently designed as potent inhibitors against histone H3 lysine 9 (H3K9) methyltransferases G9a and G9a-like protein. Here, we show that BIX-01294 and its analog E67 can also inhibit H3K9 Jumonji demethylase KIAA1718 with half-maximal inhibitory concentrations in low micromolar range. Crystallographic analysis of KIAA1718 Jumonji domain in complex with E67 indicated that the benzylated six-membered piperidine ring was disordered and exposed to solvent. Removing the moiety (generating compound E67-2) has no effect on the potency against KIAA1718 but, unexpectedly, lost inhibition against G9a-like protein by a factor of 1500. Furthermore, E67 and E67-2 have no effect on the activity against histone H3 lysine 4 (H3K4) demethylase JARID1C. Thus, our study provides a new avenue for designing and improving the potency and selectivity of inhibitors against H3K9 Jumonji demethylases over H3K9 methyltransferases and H3K4 demethylases.


Asunto(s)
Azepinas/farmacología , Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Quinazolinas/farmacología , Animales , Células Cultivadas , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/química , Ratones , Estructura Terciaria de Proteína
12.
Nat Neurosci ; 14(12): 1607-16, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22037496

RESUMEN

DNA methylation dynamics influence brain function and are altered in neurological disorders. 5-hydroxymethylcytosine (5-hmC), a DNA base that is derived from 5-methylcytosine, accounts for ∼40% of modified cytosine in the brain and has been implicated in DNA methylation-related plasticity. We mapped 5-hmC genome-wide in mouse hippocampus and cerebellum at three different ages, which allowed us to assess its stability and dynamic regulation during postnatal neurodevelopment through adulthood. We found developmentally programmed acquisition of 5-hmC in neuronal cells. Epigenomic localization of 5-hmC-regulated regions revealed stable and dynamically modified loci during neurodevelopment and aging. By profiling 5-hmC in human cerebellum, we found conserved genomic features of 5-hmC. Finally, we found that 5-hmC levels were inversely correlated with methyl-CpG-binding protein 2 dosage, a protein encoded by a gene in which mutations cause Rett syndrome. These data suggest that 5-hmC-mediated epigenetic modification is critical in neurodevelopment and diseases.


Asunto(s)
Envejecimiento/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Citosina/análogos & derivados , Epigenómica , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/crecimiento & desarrollo , 5-Metilcitosina/análogos & derivados , Envejecimiento/genética , Análisis de Varianza , Animales , Animales Recién Nacidos , Cerebelo/metabolismo , Deleción Cromosómica , Mapeo Cromosómico , Citosina/metabolismo , Citosina/farmacología , Metilación de ADN , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Inmunoprecipitación , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Fosfopiruvato Hidratasa/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Cromosoma X/genética
13.
Proc Natl Acad Sci U S A ; 108(39): 16212-6, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21908710

RESUMEN

The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD(a) and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3ζ in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.


Asunto(s)
Proteínas 14-3-3/antagonistas & inhibidores , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Ensayo de Inmunoadsorción Enzimática , Polarización de Fluorescencia , Modelos Moleculares , Unión Proteica , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Curr Opin Struct Biol ; 21(6): 750-60, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21872465

RESUMEN

Both components of chromatin (DNA and histones) are subjected to dynamic postsynthetic covalent modifications. Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the epigenetic code. Known histone lysine demethylases include flavin-dependent monoamine oxidase lysine-specific demethylase 1 and α-ketoglutarate-Fe(II)-dependent dioxygenases containing Jumonji domains. Importantly, the Jumonji domain often associates with at least one additional recognizable domain (reader) within the same polypeptide that detects the methylation status of histones and/or DNA. Here, we summarize recent developments in characterizing structural and functional properties of various histone lysine demethylases, with emphasis on a mechanism of crosstalk between a Jumonji domain and its associated reader module(s). We further discuss the role of recently identified Tet1 enzyme in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine in DNA.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/química , Lisina/química , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Citosina/química , Citosina/metabolismo , ADN/química , ADN/metabolismo , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Metilación , Relación Estructura-Actividad
15.
J Mol Biol ; 406(1): 1-8, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21167174

RESUMEN

PHF2 belongs to a class of α-ketoglutarate-Fe(2)(+)-dependent dioxygenases. PHF2 harbors a plant homeodomain (PHD) and a Jumonji domain. PHF2, via its PHD, binds Lys4-trimethylated histone 3 in submicromolar affinity and has been reported to have the demethylase activity of monomethylated lysine 9 of histone 3 in vivo. However, we did not detect demethylase activity for PHF2 Jumonji domain (with and without its linked PHD) in the context of histone peptides. We determined the crystal structures of PHF2 Jumonji domain in the absence and presence of additional exogenous metal ions. When Fe(2+) or Ni(2+) was added at a high concentration (50 mM) and allowed to soak in the preformed crystals, Fe(2+) or Ni(2+) was bound by six ligands in an octahedral coordination. The side chains of H249 and D251 and the two oxygen atoms of N-oxalylglycine (an analog of α-ketoglutarate) provide four coordinations in the equatorial plane, while the hydroxyl oxygen atom of Y321 and one water molecule provide the two axial coordinations as the fifth and sixth ligands, respectively. The metal binding site in PHF2 closely resembles the Fe(2+) sites in other Jumonji domains examined, with one important difference-a tyrosine (Y321 of PHF2) replaces histidine as the fifth ligand. However, neither Y321H mutation nor high metal concentration renders PHF2 an active demethylase on histone peptides. Wild type and Y321H mutant bind Ni(2+) with an approximately equal affinity of 50 µM. We propose that there must be other regulatory factors required for the enzymatic activity of PHF2 in vivo or that perhaps PHF2 acts on non-histone substrates. Furthermore, PHF2 shares significant sequence homology throughout the entire region, including the above-mentioned tyrosine at the corresponding iron-binding position, with that of Schizosaccharomyces pombe Epe1, which plays an essential role in heterochromatin function but has no known enzymatic activity.


Asunto(s)
Proteínas de Homeodominio/química , Hierro/química , Histona Demetilasas con Dominio de Jumonji/química , Níquel/química , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/química , Dominio Catalítico/genética , Histidina/química , Proteínas de Homeodominio/genética , Humanos , Hidróxidos/química , Histona Demetilasas con Dominio de Jumonji/genética , Datos de Secuencia Molecular , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/genética , Tirosina/química , Agua/química
16.
Nat Struct Mol Biol ; 18(1): 42-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151116

RESUMEN

The protein lysine methyltransferase SET7 regulates DNA methyltransferase-1 (DNMT1) activity in mammalian cells by promoting degradation of DNMT1 and thus allows epigenetic changes via DNA demethylation. Here we reveal an interplay between monomethylation of DNMT1 Lys142 by SET7 and phosphorylation of DNMT1 Ser143 by AKT1 kinase. These two modifications are mutually exclusive, and structural analysis suggests that Ser143 phosphorylation interferes with Lys142 monomethylation. AKT1 kinase colocalizes and directly interacts with DNMT1 and phosphorylates Ser143. Phosphorylated DNMT1 peaks during DNA synthesis, before DNMT1 methylation. Depletion of AKT1 or overexpression of dominant-negative AKT1 increases methylated DNMT1, resulting in a decrease in DNMT1 abundance. In mammalian cells, phosphorylated DNMT1 is more stable than methylated DNMT1. These results reveal cross-talk on DNMT1, through modifications mediated by AKT1 and SET7, that affects cellular DNMT1 levels.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN , Genoma Humano , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Humanos , Lisina/metabolismo , Metilación , Modelos Moleculares , Fosforilación , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Serina/metabolismo
17.
Prog Drug Res ; 67: 107-24, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21141727

RESUMEN

In Eukarya, the packaging of DNA into chromatin provides a barrier that allows for regulation of access to the genome. Chromatin is refractory to processes acting on DNA. ATP-dependent chromatin remodeling machines and histone-modifying complexes can overcome this barrier (or strengthen it in silencing processes). Both components of chromatin (DNA and histones) are subject to postsynthetic covalent modifications, including methylation of lysines (the focus of this chapter). These lysine marks are generated by a host of histone lysine methyltransferases (writers) and can be removed by histone lysine demethylases (erasers). Importantly, epigenetic modifications impact chromatin structure directly or can be read by effector regulatory modules. Here, we summarize current knowledge on structural and functional properties of various histone lysine methyltransfereases and demethylases, with emphasis on their importance as druggable targets.


Asunto(s)
Histona Demetilasas/química , N-Metiltransferasa de Histona-Lisina/química , Histonas/metabolismo , Lisina/metabolismo , Animales , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estructura Terciaria de Proteína
18.
J Clin Invest ; 120(8): 2920-30, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20592467

RESUMEN

Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-alpha-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.


Asunto(s)
Acetiltransferasas/fisiología , ADN (Citosina-5-)-Metiltransferasas/fisiología , Silenciador del Gen , Genes Supresores de Tumor , Neoplasias Pulmonares/etiología , Acetiltransferasas/genética , Animales , Cadherinas/genética , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Humanos , Masculino , Ratones , Acetiltransferasa A N-Terminal , Acetiltransferasa E N-Terminal , Células 3T3 NIH , Regiones Promotoras Genéticas , ARN Mensajero/análisis
19.
Nat Struct Mol Biol ; 17(1): 38-43, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023638

RESUMEN

Combinatorial readout of multiple covalent histone modifications is poorly understood. We provide insights into how an activating histone mark, in combination with linked repressive marks, is differentially 'read' by two related human demethylases, PHF8 and KIAA1718 (also known as JHDM1D). Both enzymes harbor a plant homeodomain (PHD) that binds Lys4-trimethylated histone 3 (H3K4me3) and a jumonji domain that demethylates either H3K9me2 or H3K27me2. The presence of H3K4me3 on the same peptide as H3K9me2 makes the doubly methylated peptide a markedly better substrate of PHF8, whereas the presence of H3K4me3 has the opposite effect, diminishing the H3K9me2 demethylase activity of KIAA1718 without adversely affecting its H3K27me2 activity. The difference in substrate specificity between the two is explained by PHF8 adopting a bent conformation, allowing each of its domains to engage its respective target, whereas KIAA1718 adopts an extended conformation, which prevents its access to H3K9me2 by its jumonji domain when its PHD engages H3K4me3.


Asunto(s)
Proteínas F-Box/química , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Modelos Moleculares , Unión Proteica , Factores de Transcripción/química , Proteínas F-Box/metabolismo , Histona Demetilasas , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxidorreductasas N-Desmetilantes , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Factores de Transcripción/metabolismo
20.
Biochemistry ; 48(20): 4220-30, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19371079

RESUMEN

The past decade has brought major advances in our knowledge of the structures and mechanisms of MAO A and MAO B, which are pharmacological targets for specific inhibitors. In both enzymes, crystallographic and biochemical data show their respective C-terminal transmembrane helices anchor the enzymes to the outer mitochondrial membrane. Pulsed EPR data show both enzymes are dimeric in their membrane-bound forms with agreement between distances measured in their crystalline forms. Distances measured between active site-directed spin-labels in membrane preparations show excellent agreement with those estimated from crystallographic data. Our knowledge of requirements for development of specific reversible MAO B inhibitors is in a fairly mature status. Less is known regarding the structural requirements for highly specific reversible MAO A inhibitors. In spite of their 70% level of sequence identity and similarities of C(alpha) folds, the two enzymes exhibit significant functional and structural differences that can be exploited in the ultimate goal of the development of highly specific inhibitors. This review summarizes the current structural and mechanistic information available that can be utilized in the development of future highly specific neuroprotectants and cardioprotectants.


Asunto(s)
Mitocondrias/metabolismo , Monoaminooxidasa/química , Compuestos Alílicos/farmacología , Animales , Butilaminas/farmacología , Membrana Celular/metabolismo , Cristalografía por Rayos X/métodos , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Monoaminooxidasa/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...