Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 14: 588230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33597848

RESUMEN

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1α expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of γ-aminobutyric acid (GABA) type A receptor-α2 subunit (GABARα2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1α in neurons. Along with this, GABARα2 expression was enhanced in the hippocampus of the PGC-1α Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABARα2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1α Tg mice compared with controls. To study whether drugs acting on PPARγ can affect GABARα2, we employed pioglitazone that elevated GABARα2 expression in primary cultured neurons. Similar results were obtained using the specific PPARγ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1α regulates GABARα2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABARα2 expression via the PPARγ/PGC-1α system.

2.
Addict Biol ; 25(1): e12720, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30730091

RESUMEN

An increasing number of reports have provided crucial evidence that epigenetic modifications, such as DNA methylation, may be involved in initiating and establishing psychostimulant-induced stable changes at the cellular level by coordinating the expression of gene networks, which then manifests as long-term behavioral changes. In this study, we evaluated the enzyme activity of DNA methyltransferases (DNMTs) after cocaine treatment and during withdrawal. Furthermore, we studied how genetic or pharmacological inhibition of DNMTs in mouse nucleus accumbens (NAc) affects the induction and expression of cocaine-induced behavioral sensitization. Our results showed that after silencing Dnmt3a in the NAc during the induction phase of cocaine-induced sensitization, overall DNMT activity decreases, correlating negatively with behavioral sensitization. Reduced Dnmt3a mRNA during this phase was the largest contributing factor for decreased DNMT activity. Cocaine withdrawal and a challenge dose increased DNMT activity in the NAc, which was associated with the expression of behavioral sensitization. Long-term selective Dnmt3a transcription silencing in the NAc did not alter DNMT activity or the expression of cocaine-induced behavioral sensitization. However, bilateral intra-NAc injection of a non-specific inhibitor of DNMT (RG108) during withdrawal from cocaine decreased DNMT activity in the NAc and had a small effect on the expression of cocaine-induced behavioral sensitization. Thus, cocaine treatment and withdrawal is associated with biphasic changes in DNMT activity in the NAc, and the expression of behavioral sensitization decreases with non-selective inhibition of DNMT but not with selective silencing of Dnmt3a.


Asunto(s)
Cocaína/farmacología , Metilación de ADN/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/enzimología , Animales , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
J Mol Neurosci ; 68(1): 99-110, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852742

RESUMEN

Early life stress initiates long-term neurobiological changes that affect stress resilience and increased susceptibility to psychopathology. Maternal separation (MS) is used to cause early life stress and it induces profound neurochemical and behavioral changes that last until adulthood. The molecular pathways of how MS affects the regulation of DNA methyltransferases (Dnmt) in brain have not been entirely characterized. We evaluated MS effects on Dnmt1, Dnmt3a and Dnmt3b expression, DNMT enzyme activity and glucocorticoid receptor (GR) recruitment to different Dnmt loci in the prefrontal cortex (PFC) of Wistar rats. We found increased plasma corticosterone levels after MS that were associated with induced Dnmt expression and enzyme activity in rat PFC at post-natal day 15 (PND15). Chromatin immunoprecipitation showed increased binding of GR at the Dnmt3b promoter after MS, suggesting that genomic signaling of GR is an important regulatory mechanism for the induced Dnmt3b expression and DNMT activity. Although GR also binds to Dnmt3a promoter and a putative regulatory region in intron 3 in rat PFC, its expression after maternal separation may be influenced by other mechanisms. Therefore, GR could be a link between early life stress experience and long-term gene expression changes induced by aberrant DNA methylation.


Asunto(s)
ADN-Citosina Metilasas/genética , Corteza Prefrontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Animales , Células Cultivadas , ADN-Citosina Metilasas/metabolismo , Femenino , Masculino , Privación Materna , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Ratas Wistar , Estrés Psicológico/etiología , Estrés Psicológico/genética
4.
Neuropharmacology ; 139: 13-25, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29964092

RESUMEN

Cocaine-related DNA methylation studies have primarily focused on the specific brain regions associated with drug addiction (e.g., the nucleus accumbens, NAc). To date, no studies have focused on the complex role of both DNA methylation and demethylation in the mechanisms of psychostimulant-induced addiction in the brain and peripheral tissues. Therefore, in this study, we evaluated cocaine treatment and withdrawal (animals were withdrawn from seven days of repeated injections of cocaine that caused behavioral sensitization) effects on epigenetic DNA modifiers (i.e., DNA methyltransferases, [DNMTs] and ten-eleven translocation enzymes [TETs]) in an addiction-specific brain region (NAc), a structure outside the mesolimbic dopaminergic system (cerebellum, Cer), and in peripheral blood cells (PBCs). Using a mouse behavioral sensitization model, we demonstrated that acute cocaine (AC; 0.5 h) treatment significantly decreased Dnmt1, Dnmt3a, Tet1, and Tet2 mRNA levels in the NAc and PBC, whereas at 24 h after AC treatment, Dnmt mRNA expression and enzyme activity levels were significantly increased. Acute procaine treatment caused the opposite effect on the Dnmt3a mRNA level in PBCs; this outcome suggests that the inhibition of voltage-gated sodium channels may be the mechanism that alters Dnmt expression in PBCs. Cocaine withdrawal is associated with increased expression of Dnmts in the NAc, Cer and PBCs and the decreased expression of Tet1 and Tet3 in the NAc. Additionally, cocaine withdrawal increased DNMT but decreased TET activity levels, and these changes were associated with enhanced global and selected candidate gene promoter-region DNA methylation and hydroxymethylation levels in the NAc and PBCs. Together, these data indicate that cocaine treatment and withdrawal affect the expression of epigenetic DNA modifiers in both addiction-specific brain structures and structures outside of the mesolimbic dopaminergic system and PBCs.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Epigénesis Genética/efectos de los fármacos , Animales , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Trastornos Relacionados con Cocaína/genética , Metilasas de Modificación del ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , ARN Mensajero/metabolismo , Síndrome de Abstinencia a Sustancias/genética , Síndrome de Abstinencia a Sustancias/metabolismo
5.
J Neurosci ; 37(43): 10516-10527, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28951451

RESUMEN

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratas , Ratas Sprague-Dawley , Esquizofrenia/genética , Factor de Transcripción 4 , Factores de Transcripción/genética
6.
PLoS One ; 6(7): e22138, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21789225

RESUMEN

BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence about the functional diversity of the alternative TCF4 protein isoforms.


Asunto(s)
Empalme Alternativo/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Exones/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Especificidad de Órganos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción 4 , Factores de Transcripción/química , Sitio de Iniciación de la Transcripción , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...