Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(36): 12661-12667, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37642325

RESUMEN

Photocatalytic glass-ceramics doped with metallic Ag, semiconductor AgBr, and hybrid metal-semiconductor Ag-AgBr nanostructures were synthesized via low-temperature Na+-Ag+ ion exchange. The spectral features of the nanostructures in the silicate glass matrix as well as their photocatalytic performance were studied in detail. Glass-ceramics containing hybrid metal-semiconductor nanostructures were shown to possess one order of magnitude higher photocatalytic activity compared to their counterparts with metallic and semiconductor nanostructures. Hybrid metal-semiconductor nanostructures allow enhancement of the net density of photogenerated hot electrons.

2.
J Phys Condens Matter ; 31(25): 255101, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-30889565

RESUMEN

NMR studies of the thermal evolution of the Ga-In-Sn and Ga-In liquid alloys embedded into opal matrices were carried out. Temperature dependences of the gallium lineshape, shift of the resonance frequency (Knight shift), and intensity were obtained upon cooling down to the alloy freezing and subsequent warming. A second high-frequency 71Ga NMR signal emerged for both alloys upon cooling, the NMR line intensity transferring gradually into this additional signal. The Knight shifts of the signals differed noticeably. The transformations of the gallium line upon warming were continuous and not affected by changes in the alloy compositions induced by melting. 115In NMR measurements were conducted to monitor the alloy compositions at freezing and melting. The findings suggest the occurrence of the liquid-liquid phase transition in the strongly supercooled alloys under nanoconfinement.

3.
Opt Express ; 24(4): 3873-84, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26907040

RESUMEN

We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons. Part of the emitted photons couples to surface plasmon modes sustained by the waveguide geometry. The transducing optical antenna is thus acting as a localized electrical source of surface plasmon polaritons. The integration of electrically-activated optical antennas into a plasmonic architecture mitigates the need for complex coupling scheme and proposes a solution for realizing nanoscale units at the interface between nano-electronics and photonics.

4.
Nano Lett ; 16(1): 791-4, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26714113

RESUMEN

(23)Na NMR studies of sodium nanoparticles confined to porous glass with the 3.5 nm mean pore size were carried out. The emergence of the second component of the NMR line was observed below 240 K that evidences the occurrence of another modification of metallic sodium. The phase transition temperature is much higher than the martensite transformation temperature in bulk sodium.

5.
Opt Lett ; 29(10): 1072-4, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15181989

RESUMEN

The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

6.
Opt Lett ; 23(5): 376-8, 1998 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18084517

RESUMEN

Picosecond pulse propagation through a field-enhanced waveguide bulk semiconductor saturable absorber is studied numerically. Fast switching from unsaturated absorption to delayed strong saturation and gain, as well as the predicted dependence of saturation energy on electric field, is based on intraband carrier kinetics and electric-field dynamics in the absorber and can lead to improved, controllable pulse shaping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA