Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microsc Res Tech ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007412

RESUMEN

Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 µg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 µg/mL and LC50 value of 1081 µg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 µg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 µg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 µg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 µg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 µg/mL for α-glucosidase and 952 µg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.

2.
Future Microbiol ; 19: 255-279, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305223

RESUMEN

The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.


Bacteria can become more difficult to kill by forming a protective layer called a biofilm. This is a problem because infections caused by these bacteria can be difficult to treat. Polyphenols are a natural compound found in plants. They have shown promise in fighting resistant bacteria by stopping bacteria from forming a biofilm. However, polyphenols have some limitations. These limitations can be overcome by using nanomaterials, which are types of tiny particles. When polyphenols are combined with nanomaterials, they become much better at fighting bacteria. This is a promising solution to treating resistant infections caused by biofilm-forming bacteria.


Asunto(s)
Infecciones Bacterianas , Polifenoles , Humanos , Polifenoles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Bacterias , Pruebas de Sensibilidad Microbiana
3.
RSC Adv ; 13(40): 27912-27922, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37736569

RESUMEN

In this study holmium oxide nanoparticles (Ho2O3 NPs) are fabricated using Hyphaene thebaica extracts as a bioreductant. The XRD pattern of HT-Ho2O3 NPs (product from phyto-reduction) suggested that the nanoparticles are crystalline with no impurities. Scherrer approximation revealed grain sizes of ∼10 nm. The HR-TEM revealed HT-Ho2O3 NPs possessed a quasi-spherical morphology complemented by SEM and the particle sizes were in the range of 6-12 nm. The infrared spectra revealed characteristic Ho-O bonding at ∼603 cm-1. Raman spectra indicated five main peaks positioned at 156 cm-1, 214 cm-1, 328 cm-1, 379 cm-1 and 607 cm-1. Eg (optical bandgap) was found to be 5.1 eV. PL spectra indicated two major peaks at 415 nm and 607 nm. EDS spectra confirmed the elemental presence of holmium (Ho). Spotty rings were obtained during the SAED measurement which indicated crystallinity of HT-Ho2O3 NPs. The HT-Ho2O3 NPs were further analyzed for their antioxidant, anti-angiogenic and cytotoxic properties. The antioxidant potential was moderate i.e., 43.40 ± 0.96% at 1000 µg mL-1 which decreased in a dose dependent manner. Brine shrimp lethality was highest at 1000 µg mL-1 with the LC50 320.4 µg mL-1. Moderate anti-angiogenic potential was observed using in ova CAM assay. MTT bioassay revealed that the HT-Ho2O3 NPs inhibited the 3T3 cells (IC50 67.9 µg mL-1), however, no significant inhibition was observed against MCF-7 cells. α-Amylase and ß-glucosidase inhibition revealed that the HT-Ho2O3 NPs can be of use in controlling blood glucose levels. Overall, it can be concluded that biosynthesis using aqueous extracts can be a suitable alternative in finding ecofriendly paradigms for the synthesis of nanoparticles. We suggest extended research into the bioreduced Ho2O3 NPs for establishing their biomedical potential and toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA