Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 152: 1-18, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36028200

RESUMEN

Zinc based biodegradable metals (BMs) show great potential to be used in various biomedical applications, owing to their superior biodegradability and biocompatibility. Some high-strength (ultimate tensile strength > 600 MPa) Zn based BMs have already been developed through alloying and plastic working, making their use in load-bearing environments becomes a reality. However, different from Mg and Fe based BMs, Zn based BMs exhibit significant "strain-softening" effect that leads to limited uniform deformation. Non-uniform deformation is detrimental to Zn based devices or implants, which will possibly lead to unexpected failure. People might be misled by the considerable fracture elongation of Zn based BMs. Thus, it is important to specify uniform elongation as a term of mechanical requirements for Zn based BMs. In this review, recent advances on the mechanical properties of Zn based BMs have been comprehensively summarized, especially focusing on the strain softening phenomenon. At first, the origin and evaluation criteria of strain softening were introduced. Secondly, the effects of alloying elements (including element type, single or multiple addition, and alloying content) and microstructural characteristics (grain size, constituent phase, phase distribution, etc.) on mechanical properties (especially for uniform elongation) of Zn based BMs were summarized. Finally, how to get a good balance between strength and uniform elongation was generally discussed based on the service environment. In addition, possible ways to minimize or eliminate the strain softening effect were also proposed, such as controlling of twins, solute clusters, and grain boundary characteristics. All these items above would be helpful to understand the mechanical instability of Zn based BMs, and to make the full usage of them in the future medical device design. STATEMENT OF SIGNIFICANCE: Biodegradable metals (BMs) is a hotspot in the field of metallic biomaterials. Fracture elongation is normally adopted to quantify the deformability of Mg and Fe based BMs owing to their negligible necking strain, yet the strain softening would occur in Zn based BMs, which is extremely detrimental to performance of their medical device. In this review paper, a better understanding the mechanical performance of Zn-based BMs with the term "uniform elongation" instead of "fracture elongation" was depicted, and possible ways to minimize or eliminate the strain softening effect were also proposed, such as twins, solute clusters, self-stable dislocation network, and grain boundary characteristics. It would be helpful to understand the mechanical instability of Zn based BMs and making full usage of it in the future medical device design.


Asunto(s)
Implantes Absorbibles , Zinc , Aleaciones/química , Materiales Biocompatibles/química , Corrosión , Humanos , Ensayo de Materiales , Plásticos , Zinc/química
2.
Materials (Basel) ; 13(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202781

RESUMEN

In the present study, the unique bimodal grain size distribution microstructure with the ultrafine substrate and embedded macro grains was fabricated by a traditional hot-rolling process in a novel low-cost Ti-2Fe-0.1B titanium alloy, which possesses a good combination of strength (around 663 MPa) and ductility (around 30%) without any post heat treatment. Meanwhile, the mechanical behavior and corrosion resistance of hot-rolled Ti-2Fe-0.1B alloy after equal channel angular pressing (ECAP) deformation were studied. Results indicated that the average grain size decreased to 0.24 µm after 4 passes ECAP deformation, which led to the enhancement of tensile strength to around 854 MPa and good ductility to around 15%. In addition, corrosion resistance was also improved after ECAP due to the rapid self-repairing and thicker passivation film. Our study revealed that the novel low-cost titanium alloy after hot-rolling and ECAP could be used instead of Ti-6Al-4V in some industrial applications due to similar mechanical behavior and better corrosion resistance.

3.
Biomater Sci ; 8(18): 5071-5087, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32812545

RESUMEN

High-pressure torsion (HPT) can refine the microstructure and consequently modify the properties, such as mechanical and corrosion properties, of Mg and its alloys. Biodegradable magnesium materials alloyed with the essential elements of life, such as Ca and Sr, are a current research frontier. In this study, biodegradable ultrafine-grained pure Mg, Mg-Ca alloy, and Mg-Sr alloy were prepared using HPT processing. The microstructure, mechanical properties, biodegradable behaviors, and biocompatibility in vitro and in vivo of these materials were systematically investigated. Our results revealed that HPT pure Mg with a bimodal and ultrafine-grained microstructure showed higher mechanical strength, ductility, and degradation rate compared with the as-received materials. The good biocompatibility of HPT pure Mg was confirmed both in vitro and in vivo. The HPT Mg-Ca alloy and Mg-Sr alloy with homogeneous ultrafine-grained microstructures showed higher mechanical strength and lower degradation rate than their as-cast counterparts. The good biocompatibility of the HPT Mg-Ca alloy and Mg-Sr alloy was also revealed. All these findings indicate that HPT is an alternative avenue to fabricate biodegradable Mg-based materials.


Asunto(s)
Aleaciones , Magnesio , Materiales Biocompatibles , Corrosión , Ensayo de Materiales
5.
J Biomed Mater Res A ; 101(6): 1694-707, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23184756

RESUMEN

Bulk nanocrystalline Ti bars (Grade 4, Φ4 × 3000 mm(3)) were massively fabricated by equal channel angular pressing (ECAP) via follow-up conform scheme with the microcrystalline CP Ti as raw material. Homogeneous nanostructured crystals with the average grain size of 250 nm were identified for the ECAPed Ti, with extremely high tensile/fatigue strength (around 1240/620 MPa) and adorable elongation (more than 5%). Pronounced formation of bonelike apatite for the nanocrystalline Ti group after 14 days static immersion in simulated body fluids (SBF) reveals the prospective in vitro bioactive capability of fast calcification, whereas an estimated 17% increment in protein adsorption represents good bioaffinity of nanocrystalline Ti. The documentation onto the whole life circle of osteoblast cell lines (MG63) revealed the strong interactions and superior cellular functionalization when they are co-incubated with bulk nanocrystalline Ti sample. Moreover, thread-structured specimens were designed and implanted into the tibia of Beagles dogs till 12 weeks to study the in vivo responses between bone and metallic implant made of bulk nanocrystalline Ti, with the microcrystalline Ti as control. For the implanted nanostructured Ti group, neoformed bone around the implants underwent the whole-stage transformation proceeding from originally osteons or immature woven bone to mature lamellar bone (skeletonic trabecular), even with the remodeling being finished till 12 weeks. The phenomenal osseointegration of direct implant-bone contact can be revealed from the group of the ECAPed Ti without fibrous tissue encapsulation in the gap between the implant and autogenous bone.


Asunto(s)
Ensayo de Materiales , Nanopartículas/química , Nanotecnología/métodos , Titanio/farmacología , Adsorción/efectos de los fármacos , Albúminas/metabolismo , Animales , Apatitas/farmacología , Densidad Ósea/efectos de los fármacos , Huesos/citología , Huesos/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalización , Perros , Femenino , Humanos , Ratones , Microscopía Electrónica de Rastreo , Modelos Biológicos , Nanopartículas/ultraestructura , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos
6.
J Biomed Mater Res B Appl Biomater ; 100(7): 1812-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22807469

RESUMEN

XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.


Asunto(s)
Aleaciones/química , Arsénico/análisis , Ácido Fluorhídrico/química , Nanoestructuras/química , Titanio/química , Arsénico/química
7.
J Nanosci Nanotechnol ; 12(11): 8567-72, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23421245

RESUMEN

The results of XPS measurements of nanostructured Ti (ns-Ti) prepared with a help of severe plastic deformation (SPD) have been presented. We have measured XPS spectra of core levels (Ti 2p, O 1s, C 1s, F 1s) and valence bands before and after treatment of ns-Ti-implants in HF. The obtained data have been compared with XPS measurements of untreated and acid treated coarse-grained Ti (cg-Ti). According to these measurements the surface composition has not practically been changed by reduction of grains size of Ti-implants. It has been found that the surface of both types of implants is covered with thick TiO2 layer. The acid treatment reduces the surface contamination of ns-Ti and cg-Ti by hydrocarbons and induces better passivation and formation of more thick TiO2 layer. It has been shown that severe plastic deformation not only improves mechanical properties but also preserves corrosion stability of Ti-implants.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/ultraestructura , Prótesis e Implantes , Titanio/química , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
8.
Acta Biomater ; 6(7): 2816-25, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20056173

RESUMEN

Equal channel angular pressing results in ultrafine-grained (approximately 200-500 nm) Ti with superior mechanical properties without harmful alloying elements, which benefits medical implants. To further improve the bioactivity of Ti surfaces, Ca/P-containing porous titania coatings were prepared on ultrafine-grained and coarse-grained Ti by micro-arc oxidation (MAO). The phase identification, composition, morphology and microstructure of the coatings and the thermal stability of ultrafine-grained Ti during MAO were investigated subsequently. The amounts of Ca, P and the Ca/P ratio of the coatings formed on ultrafine-grained Ti were greater than those on coarse-grained Ti. Nanocrystalline hydroxyapatite and alpha-Ca(3)(PO(4))(2) phases appeared in the MAO coating formed on ultrafine-grained Ti for 20 min (E20). Incubated in a simulated body fluid, bone-like apatite was completely formed on the surface of E20 after 2 days, thus evidencing preferable bioactivity. Compared with initial ultrafine-grained Ti, the microhardness of the E20 substrate was reduced by 8% to 2.9 GPa, which is considerably more than that of coarse-grained Ti (approximately 1.5 GPa).


Asunto(s)
Durapatita/síntesis química , Titanio/química , Cristalización , Durapatita/química , Microscopía Electrónica de Rastreo , Estructura Molecular , Oxidación-Reducción , Análisis Espectral/métodos , Propiedades de Superficie , Difracción de Rayos X , Rayos X
9.
Phys Rev Lett ; 100(9): 095701, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18352724

RESUMEN

Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.

10.
J Mater Sci ; 43(23-24): 7354-7359, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-36039097

RESUMEN

Severe plastic deformation (SPD) of titanium creates an ultrafine-grained (UFG) microstructure which results in significantly enhanced mechanical properties, including increasing the high cycle fatigue strength. This work addresses the challenge of maintaining the high level of properties as SPD processing techniques are evolved from methods suitable for producing laboratory scale samples to methods suitable for commercial scale production of titanium semi-products. Various ways to optimize the strength and fatigue endurance limit in long-length Grade 4 titanium rod processed by equal channel angular pressing (ECAP) with subsequent thermal mechanical treatments are considered in this paper. Low-temperature annealing of rods is found to increase the fatigue limit, simultaneously enhancing UFG titanium strength and ductility. The UFG structure in titanium provides an optimum combination of properties when its microstructure includes mostly equiaxed grains with high-angle boundaries, the volume fraction of which is no less than 50%.

11.
J Nanosci Nanotechnol ; 1(2): 237-42, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12914057

RESUMEN

Equal-channel angular pressing (ECAP) has been used to refine the grain size of commercially pure (CP) titanium as well as other metals and alloys. CP-Ti is usually processed at about 400 degrees C because it lacks sufficient ductility at lower temperature. The warm processing temperature limits the ability of the ECAP technique to improve the strength of CP-Ti. We have employed cold deformation following warm ECAP to further improve the strength of CP-Ti. Ti billets were first processed for eight passes via ECAP route Bc, with a clockwise rotation of 90 degrees between adjacent passes. The grain size obtained by ECAP alone is about 260 nm. The billets were further processed by cold deformation (cold rolling) to increase the crystalline defects such as dislocations. The strength of pure Ti was improved from 380 to around 1000 MPa by the two-step process. This article reports the microstructures, microhardness, tensile properties, and thermal stability of these Ti billets processed by a combination of ECAP and cold deformation.


Asunto(s)
Cristalización/métodos , Nanotecnología/métodos , Titanio/química , Titanio/aislamiento & purificación , Frío , Cristalografía/métodos , Elasticidad , Dureza , Calor , Ensayo de Materiales/métodos , Microscopía Electrónica , Microesferas , Conformación Molecular , Tamaño de la Partícula , Presión , Control de Calidad , Temperatura , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...