Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(4): e0021523, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37010433

RESUMEN

Agrobacterium biovar 1 is a soilborne plant pathogen with the ability to colonize the irrigation system of greenhouses, causing hairy root disease (HRD). Currently, management focuses on using hydrogen peroxide to disinfect the nutrient solution, but due to the emergence of resistant strains, its efficacy and sustainability are questioned. Using a relevant collection of pathogenic Agrobacterium biovar 1 strains, OLIVR1 to 6, six phages specific to this pathogen and belonging to three different genera were isolated from Agrobacterium biovar 1-infected greenhouses. All phages were named OLIVR, referring to their location of isolation, Onze-Lieve-Vrouwe-Waver, and were characterized by whole-genome analysis, confirming their strictly lytic lifestyle. They remained stable under greenhouse-relevant conditions. To assess the efficacy of the phages, their ability to disinfect greenhouse nutrient solution inoculated with agrobacteria was tested. Each of the phages infected their host, but their ability to decrease the bacterial concentration differed. For instance, OLIVR1 reduced the bacterial concentration with 4 log units without phage resistance emerging. While OLIVR4 and OLIVR5 were also infectious in nutrient solution, they did not always decrease the bacterial load below the limit of detection, and phage resistance emerged. Finally, the mutations causing phage resistance by receptor modification were identified. For OLIVR4-resistant Agrobacterium isolates, but not for OLIVR5-resistant isolates, motility decreased. Together, these data show the potential of some of these phages as disinfectant of nutrient solution, and they might be a valuable tool to tackle HRD. IMPORTANCE Hairy root disease, caused by rhizogenic Agrobacterium biovar 1 is a rapidly emerging bacterial disease worldwide. It affects tomatoes, cucumbers, eggplant, and bell pepper, causing high yield losses in hydroponic greenhouses. Recent findings suggest that the current management practices, mainly focusing on UV-C and hydrogen peroxide to disinfect contaminated water, have a questionable efficacy. Hence, we investigate the potential of phages as a biological means of preventing this disease. Using a diverse collection of Agrobacterium biovar 1, we isolated three different phage species that together infect 75% of the collection. Since these phages are strictly lytic, while remaining both stable and infectious under greenhouse-relevant conditions, they might be suitable candidates for biological control.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Agrobacterium , Hidroponía , Peróxido de Hidrógeno/farmacología , Mutación
2.
BMC Microbiol ; 22(1): 304, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513996

RESUMEN

The growing interest in the therapeutic application of bacteriophages leads to a drastic increase in the number of sequenced genomes. Luckily, recent insights in phage taxonomy facilitate the classification of phages in a comprehensive and data-driven manner as recently proposed by the International Committee on Taxonomy of Viruses. In this research, we present the taxonomical classification of a novel, narrow host range Xanthomonas phage FoX4, isolated from a Brussels sprouts field in Belgium infested with Xanthomonas campestris pv. campestris. The phage has a limited ability to lyse a bacterial culture, yet adsorbs efficiently to its host. Based on its genome sequence and low similarity to previously described phages, the phage comprises the novel phage genus Foxquatrovirus.


Asunto(s)
Bacteriófagos , Siphoviridae , Xanthomonas campestris , Bacteriófagos/genética , Genoma Viral , Siphoviridae/genética , Especificidad del Huésped , Xanthomonas campestris/genética
3.
Plant Dis ; 106(1): 275-281, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34293918

RESUMEN

Tomato brown rugose fruit virus (ToBRFV), belonging to the genus Tobamovirus, is a highly virulent emerging virus, causing disease outbreaks and significant crop losses worldwide. The growing number of ToBRFV epidemic episodes prompted the investigation of the role of seeds in the dissemination of the virus as an important aspect in the overall disease management. Therefore, the objectives of this study were to determine the localization of ToBRFV within tomato seeds and to evaluate its seed transmission characteristics. Seeds extracted from naturally ToBRFV-infected tomato fruits were tested for the presence of the virus using serological, molecular, and biological assays. Three immunolocalization techniques were used to determine the localization and distribution of ToBRFV within the different tissues and parts of tomato seeds. To evaluate seed transmission of ToBRFV, two grow-out experiments were conducted to assess the rate of both vertical (seeds to progeny seedlings) and possible horizontal transmission (plant to plant) based on serological and molecular assays. Seeds extracted from ToBRFV-infected fruits had a 100% contamination rate. The localization of ToBRFV in tomato seeds is only external on the seed coat (testa). Seed transmission rate from seeds to their seedlings was very low (0.08%), while no transmission was recorded from plants to plants in a small-scale greenhouse experimental setup. In conclusion, ToBRFV is a seedborne virus located externally on tomato seed coat and transmitted mechanically from ToBRFV-contaminated tomato seeds to seedlings, which could initiate a disease foci and eventually drive further dissemination and spread of the disease in a new growing area.


Asunto(s)
Enfermedades de las Plantas/virología , Semillas/virología , Solanum lycopersicum , Tobamovirus , Frutas , Solanum lycopersicum/virología
4.
Virus Res ; 286: 197964, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32445873

RESUMEN

Camellia japonica plants manifesting a complex and variable spectrum of viral symptoms like chlorotic ringspots, necrotic rings, yellowing with necrotic rings, yellow mottle, leaves and petals deformations, and flower color-breaking have been studied since 1940, mainly by electron microscopic analyses; however, a strong correlation between the symptoms and one or more well-characterized viruses was never verified. In this work, samples collected from symptomatic plants were analyzed using the next-generation sequencing technique, and a complex virome composed of members of the Betaflexiviridae and Fimoviridae families was identified. In particular, the genomic fragments typical of the emaravirus group were organized in the genomes of two new emaraviruses species, tentatively named Camellia japonica-associated emaravirus 1 and 2. They are the first emaraviruses described in camellia plants and found in symptomatic plants. At the same time, in both symptomatic and asymptomatic plants, five betaflexivirus isolates were detected that, based on amino acid sequence comparisons, can be considered two new isolates of the recently characterized camellia ringspot-associated virus 1 and 2 (CRSaV-1/2). These recently identified betaflexiviruses associated with C. japonica disease show an unusual hyper-conservation of the coat protein at the amino acid level. The GenBank/EMBL/DDBJ accession numbers of the sequences reported in this paper are MN385581, MN532567, MN532565, MN385582, MN532566, MN385573, MN385577, MN385574, MN385578, MN385575, MN385579, MN385576, MN385580, MN557024, MN557025, MN557026, MN557027, and MN557028.


Asunto(s)
Camellia/virología , Flexiviridae/clasificación , Genoma Viral , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Viroma , Flexiviridae/aislamiento & purificación , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Hojas de la Planta/virología , Virus ARN/aislamiento & purificación
5.
Virus Res ; 273: 197737, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31479695

RESUMEN

Holothuria polii is a marine animal with an important ecological and economic impact. In the present study we analysed the presence of mycoviruses associated to fungi that were isolated from different H. polii tissues. Among the 48 fungal isolates analysed we identified 10 viruses in 8 strains belonging to 7 fungal species. Five out of nine viruses have a dsRNA genome: three of them belong to the Partitiviridae family, one belongs to a still undefined clade of bipartite viruses and the last one belongs to the Chrysoviridae family. We also identified two viruses belonging to a recently proposed new mycovirus taxon named polymycovirus. Two viruses belong to the positive single stranded RNA clade: one falls into the new Botourmiaviridae family, specifically in the Magoulivirus genus, and the other one falls into a still undefined clade phylogenetically related to tombusviruses. Finally, we also identified a virus with a negative stranded RNA genome showing similarity to a group of viruses recently proposed as a new family of mycoviruses in the order Bunyavirales. A bioinformatics approach comparing two datasets of contigs containing two closely related mycobunyaviruses allowed us to identify putative nucleocapsids (Nc) and non-structural (Ns) associated proteins. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: PRJNA432529, MG913290, MG913291, MG887747, MG887748, MG887749, MG887750, MG887751, MG887752, MG887753, MG887754, MG887755, MG887756, MG887757, MG887758, MG887759, MG887760, MG887761, MG887762, MG887763, MG887764, MG887765, MG887766, MG887767, MH271211, MN163273, MN163274.


Asunto(s)
Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Hongos/virología , Genoma Viral , Holothuria/microbiología , Filogenia , Animales , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Virus ARN/clasificación , ARN Bicatenario , ARN Viral/genética
6.
Virus Res ; 219: 22-38, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-26546154

RESUMEN

The number of reported mycoviruses is increasing exponentially due to the current ability to detect mycoviruses using next-generation sequencing (NGS) approaches, with a large number of viral genomes built in-silico using data from fungal transcriptome projects. We decided to screen a collection of fungi originating from a specific marine environment (associated with the seagrass Posidonia oceanica) for the presence of mycoviruses: our findings reveal a wealth of diversity among these symbionts and this complexity will require further studies to address their specific role in this ecological niche. In specific, we identified twelve new virus species belonging to nine distinct lineages: they are members of megabirnavirus, totivirus, chrysovirus, partitivirus and five still undefined clades. We showed evidence of an endogenized virus ORF, and evidence of accumulation of dsRNA from metaviridae retroviral elements. We applied different techniques for detecting the presence of mycoviruses including (i) dsRNA extraction and cDNA cloning, (ii) small and total RNA sequencing through NGS techniques, (iii) rolling circle amplification (RCA) and total DNA extraction analyses, (iv) virus purifications and electron microscopy. We tried also to critically evaluate the intrinsic value and limitations of each of these techniques. Based on the samples we could compare directly, RNAseq analysis is superior to sRNA for de novo assembly of mycoviruses. To our knowledge this is the first report on the virome of fungi isolated from marine environment. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: KT601099-KT601110; KT601114-KT601120; KT592305; KT950836-KT950841.


Asunto(s)
Organismos Acuáticos , Virus Fúngicos/fisiología , Hongos/fisiología , Hongos/virología , Plásmidos/genética , Simbiosis , Productos Biológicos , Biología Computacional , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/ultraestructura , Hongos/aislamiento & purificación , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Viral
7.
J Virol ; 88(10): 5788-802, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623427

RESUMEN

UNLABELLED: Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. IMPORTANCE: Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.


Asunto(s)
Insectos Vectores , Thysanoptera/virología , Tospovirus/fisiología , Proteínas Virales/metabolismo , Animales , Datos de Secuencia Molecular , Mutación , ARN Viral/genética , Análisis de Secuencia de ADN , Nicotiana/virología , Tospovirus/genética , Tospovirus/aislamiento & purificación , Carga Viral , Proteínas Virales/genética
8.
Nucleic Acids Res ; 39(17): 7548-63, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21672957

RESUMEN

Cadmium is a genotoxic pollutant known to target proteins that are involved in DNA repair and in antioxidant defence, altering their functions and ultimately causing mutagenic and carcinogenic effects. We have identified a PLAC8 domain-containing protein, named OmFCR, by a yeast functional screen aimed at identifying genes involved in cadmium resistance in the endomycorrhizal fungus Oidiodendron maius. OmFCR shows a remarkable specificity in mediating cadmium resistance. Both its function and its nuclear localization in yeast strictly depend on the interaction with Mlh3p, a subunit of the mismatch repair (MMR) system. Although proteins belonging to the PLAC8 family are widespread in eukaryotes, they are poorly characterized and their biological role still remains elusive. Our work represents the first report about the potential role of a PLAC8 protein in physically coupling DNA lesion recognition by the MMR system to appropriate effectors that affect cell cycle checkpoint pathways. On the basis of cell survival assays and yeast growth curves, we hypothesize that, upon cadmium exposure, OmFCR might promote a higher rate of cell division as compared to control cells.


Asunto(s)
Ascomicetos/genética , Cadmio/toxicidad , Proteínas Fúngicas/metabolismo , Mutágenos/toxicidad , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Ascomicetos/metabolismo , Proteínas de Ciclo Celular/genética , Biología Computacional/métodos , Reparación de la Incompatibilidad de ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Fúngicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...