Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 69(11): 2658-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34314531

RESUMEN

NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3-month-old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single-cell RT-qPCR and self-organizing Kohonen map analysis of tdTomato-positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury-dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte-like NG2 glia, we used single-cell RNA-sequencing analysis and to disclose their basic membrane properties, the patch-clamp technique was employed. Overall, we have proved that astrocyte-like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte-like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.


Asunto(s)
Astrocitos , Isquemia Encefálica , Animales , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Gliosis/patología , Ratones , Neuroglía/metabolismo , Oligodendroglía/patología
2.
Cell Rep ; 31(11): 107777, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32553170

RESUMEN

Ischemic stroke is a well-recognized disease of aging, yet it is unclear how the age-dependent vulnerability occurs and what are the underlying mechanisms. To address these issues, we perform a comprehensive RNA-seq analysis of aging, ischemic stroke, and their interaction in 3- and 18-month-old mice. We assess differential gene expression across injury status and age, estimate cell type proportion changes, assay the results against a range of transcriptional signatures from the literature, and perform unsupervised co-expression analysis, identifying modules of genes with varying response to injury. We uncover downregulation of axonal and synaptic maintenance genetic program, and increased activation of type I interferon (IFN-I) signaling following stroke in aged mice. Together, these results paint a picture of ischemic stroke as a complex age-related disease and provide insights into interaction of aging and stroke on cellular and molecular level.


Asunto(s)
Envejecimiento/fisiología , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Daño por Reperfusión/metabolismo , Animales , Isquemia Encefálica/genética , Modelos Animales de Enfermedad , Ratones
3.
Glia ; 66(5): 1068-1081, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29393544

RESUMEN

NG2 cells represent precursors of oligodendrocytes under physiological conditions; however, following cerebral ischemia they play an important role in glial scar formation. Here, we compared the expression profiles of oligodendroglial lineage cells, after focal cerebral ischemia (FCI) and in Alzheimer's-like pathology using transgenic mice, which enables genetic fate-mapping of Cspg4-positive NG2 cells and their progeny, based on the expression of red fluorescent protein tdTomato. tdTomato-positive cells possessed the expression profile of NG2 cells and oligodendrocytes; however, based on the expression of cell type-specific genes, we were able to distinguish between them. To shed light on the changes in the expression patterns caused by FCI, we employed self-organizing Kohonen maps, enabling the division of NG2 cells and oligodendrocytes into subpopulations based on similarities in the expression profiles of individual cells. We identified three subpopulations of NG2 cells emerging after FCI: proliferative; astrocyte-like and oligodendrocyte-like NG2 cells; such phenotypes were further confirmed by immunohistochemistry. Oligodendrocytes themselves formed four subpopulations, which reflected the process of oligodendrocytes maturation. Finally, we used 5-ethynyl-2' deoxyuridine (EdU) labeling to reveal that NG2 cells can differentiate directly into reactive astrocytes without preceding proliferation. In contrast, in Alzheimer's-like pathology we failed to identify these subpopulations. Collectively, here we identified several yet unknown differences between the expression profiles of NG2 cells and oligodendrocytes, and characterized specific genes contributing to oligodendrocyte maturation and phenotypical changes of NG2 cells after FCI. Moreover, our results suggest that, unlike in Alzheimer's-like pathology, NG2 cells acquire a multipotent phenotype following FCI.


Asunto(s)
Isquemia Encefálica/fisiopatología , Regeneración Nerviosa/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Animales , Astrocitos/patología , Astrocitos/fisiología , Encéfalo/patología , Encéfalo/fisiopatología , Isquemia Encefálica/patología , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Ratones Transgénicos , Células Precursoras de Oligodendrocitos/patología , Análisis de la Célula Individual
4.
Biochem Pharmacol ; 141: 42-55, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522408

RESUMEN

NG2 cells represent one of the most proliferative glial cell populations in the intact mammalian central nervous system (CNS). They are well-known for their ability to renew themselves or to generate new oligodendrocytes during development as well as in adulthood, therefore also being termed oligodendrocyte progenitor cells. Following CNS injuries, such as demyelination, trauma or ischemia, the proliferative capacity of NG2 cells rapidly increases and moreover, their differentiation potential broadens, as documented by numerous reports also describing their differentiation into astrocytes or even neurons. Here, we summarize the current knowledge about NG2 cells proliferation, their fate plasticity during embryogenesis as well as in postnatal CNS under physiological and pathological conditions, with the main emphasis on the role of various signaling molecules, growth factors, hormones or even neurotransmitters on the fate potential of NG2 cells.


Asunto(s)
Células Madre Multipotentes/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Células Madre/fisiología , Animales , Antígenos/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Fármacos del Sistema Nervioso Central/farmacología , Fármacos del Sistema Nervioso Central/uso terapéutico , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/trasplante , Neurogénesis/efectos de los fármacos , Neuroglía/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Proteoglicanos/metabolismo , Células Madre/efectos de los fármacos
5.
Front Cell Neurosci ; 10: 243, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812322

RESUMEN

The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, and dosage. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age-matched FVB/NJ male mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial tamoxifen dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any tamoxifen metabolites in the ipsilateral hemisphere. Taken together, we showed that tamoxifen metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.

6.
Glia ; 64(9): 1518-31, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27340757

RESUMEN

NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Diferenciación Celular/fisiología , Neuroglía/metabolismo , Oligodendroglía/metabolismo , Animales , Lesiones Encefálicas/patología , Isquemia Encefálica/patología , Recuento de Células , Proteínas Hedgehog/metabolismo , Ratones , Transducción de Señal
7.
Cell Mol Neurobiol ; 35(8): 1187-202, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25994914

RESUMEN

Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.


Asunto(s)
Isquemia Encefálica/metabolismo , Corteza Cerebral/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteínas Fluorescentes Verdes/biosíntesis , Neuroglía/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Células Cultivadas , Corteza Cerebral/química , Proteína Ácida Fibrilar de la Glía/análisis , Proteínas Fluorescentes Verdes/análisis , Humanos , Ratones , Ratones Transgénicos , Neuroglía/química , Receptores de Glutamato/análisis , Receptores de Glutamato/biosíntesis , Receptores de N-Metil-D-Aspartato/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...