Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 347 Pt 3: 781-5, 2000 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10769183

RESUMEN

14-3-3 proteins may function as adapter or scaffold proteins in signal transduction pathways. We reported previously that several 14-3-3 isotypes bind to protein kinase C (PKC)-zeta and facilitate coupling of PKC-zeta to Raf-1 [van der Hoeven, van der Wal, Ruurs, van Dijk and van Blitterswijk (2000) Biochem. J. 345, 297-306], an event that boosts the mitogen-activated protein kinase (ERK) pathway in Rat-1 fibroblasts. The present work investigated whether bound 14-3-3 would affect PKC-zeta activity. Using recombinant 14-3-3 proteins and purified PKC-zeta in a convenient, newly developed in vitro kinase assay, we found that 14-3-3 proteins stimulated PKC-zeta activity in a dose-dependent fashion up to approx. 2.5-fold. Activation of PKC-zeta by 14-3-3 isotypes was unrelated to their mutual affinity, estimated by co-immunoprecipitation from COS cell lysates. Accordingly, PKC-zeta with a defective (point-mutated) 14-3-3-binding site, showed the same 14-3-3-stimulated activity as wild-type PKC-zeta. As 14-13-3 proteins are acidic, we tested several other acidic proteins, which turned out to stimulate PKC-zeta activity in a similar fashion, whereas neutral or basic proteins did not. These effects were not restricted to the atypical PKC-zeta, but were also found for classical PKC. Together, the results suggest that the stimulation of PKC activity by 14-3-3 proteins is non-specific and solely due to the acidic nature of these proteins, quite similar to that known for acidic lipids.


Asunto(s)
Proteína Quinasa C/metabolismo , Proteínas/química , Proteínas/farmacología , Tirosina 3-Monooxigenasa , Proteínas 14-3-3 , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biotinilación , Células COS , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proteína Quinasa C/química , Proteína Quinasa C/genética , Proteína Quinasa C/aislamiento & purificación , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Especificidad por Sustrato , Transfección
2.
Biochem J ; 345 Pt 2: 297-306, 2000 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-10620507

RESUMEN

14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-zeta (PKC-zeta) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-zeta-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipitation experiments in COS cells revealed that complex formation between PKC-zeta and Raf-1 is mediated strongly by the 14-3-3beta and -theta; isotypes, but not by 14-3-3zeta. Far-Western blotting revealed that 14-3-3 binds PKC-zeta directly at its regulatory domain, where a S186A mutation in a putative 14-3-3-binding domain strongly reduced the binding and the complex formation with 14-3-3beta and Raf-1. Treatment of PKC-zeta with lambda protein phosphatase also reduced its binding to 14-3-3beta in vitro. Preincubation of an immobilized Raf-1 construct with 14-3-3beta facilitated PKC-zeta binding. Together, the results suggest that 14-3-3 binds both PKC-zeta (at phospho-Ser-186) and Raf-1 in a ternary complex. Complex formation was much stronger with a kinase-inactive PKC-zeta mutant than with wild-type PKC-zeta, supporting the idea that kinase activity leads to complex dissociation. 14-3-3beta and -θ were substrates for PKC-zeta, whereas 14-3-3zeta was not. Phosphorylation of 14-3-3beta by PKC-zeta negatively regulated their physical association. 14-3-3beta with its putative PKC-zeta phosphorylation sites mutated enhanced co-precipitation between PKC-zeta and Raf-1, suggesting that phosphorylation of 14-3-3 by PKC-zeta weakens the complex in vivo. We conclude that 14-3-3 facilitates coupling of PKC-zeta to Raf-1 in an isotype-specific and phosphorylation-dependent manner. We suggest that 14-3-3 is a transient mediator of Raf-1 phosphorylation and activation by PKC-zeta.


Asunto(s)
Proteína Quinasa C/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Tirosina 3-Monooxigenasa , Proteínas 14-3-3 , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Proteínas/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Especificidad por Sustrato
3.
J Biol Chem ; 274(13): 8589-96, 1999 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-10085094

RESUMEN

Protein kinase B (PKB), also known as Akt or RAC-PK, is a serine/threonine kinase that can be activated by growth factors via phosphatidylinositol 3-kinase. In this article we show that PKCzeta but not PKCalpha and PKCdelta can co-immunoprecipitate PKB from CHO cell lysates. Association of PKB with PKCzeta was also found in COS-1 cells transiently expressing PKB and PKCzeta, and moreover we found that this association is mediated by the AH domain of PKB. Stimulation of COS-1 cells with platelet-derived growth factor (PDGF) resulted in a decrease in the PKB-PKCzeta interaction. The use of kinase-inactive mutants of both kinases revealed that dissociation of the complex depends upon PKB activity. Analysis of the activities of the interacting kinases showed that PDGF-induced activation of PKCzeta was not affected by co-expression of PKB. However, both PDGF- and p110-CAAX-induced activation of PKB were significantly abolished in cells co-expressing PKCzeta. In contrast, co-expression of a kinase-dead PKCzeta mutant showed an increased induction of PKB activity upon PDGF treatment. Downstream signaling of PKB, such as the inhibition of glycogen synthase kinase-3, was also reduced by co-expression of PKCzeta. A clear inhibitory effect of PKCzeta was found on the constitutively active double PKB mutant (T308D/S473D). In summary, our results demonstrate that PKB interacts with PKCzeta in vivo and that PKCzeta acts as a negative regulator of PKB.


Asunto(s)
Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Bovinos , Cricetinae , Ratones , Datos de Secuencia Molecular , Mutación/genética , Fosforilación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Pruebas de Precipitina , Unión Proteica , Proteína Quinasa C/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal
4.
Biochem J ; 323 ( Pt 3): 693-9, 1997 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9169602

RESUMEN

The role of diacylglycerol (DG) formation from phosphatidylcholine in mitogenic signal transduction is poorly understood. We have generated this lipid at the plasma membrane by treating Rat-1 fibroblasts with bacterial phosphatidylcholine-specific phospholipase C (PC-PLC). This treatment leads to activation of mitogen-activated protein kinase (MAPK). However, unlike platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), PC-PLC fails to activate Ras and to induce DNA synthesis, and activates MAPK only transiently (<45 min). Down-regulation of protein kinase C (PKC) -alpha, -delta and -epsilon isotypes has little or no effect on MAPK activation by either PC-PLC or growth factors. However, Ro 31-8220, a highly selective inhibitor of all PKC isotypes, including atypical PKC-zeta but not Raf-1, blocks MAPK activation by PDGF and PC-PLC, but not that by EGF, suggesting that atypical PKC mediates the PDGF and PC-PLC signal. In line with this, PKC-zeta is activated by PC-PLC and PDGF, but not by EGF, as shown by a kinase assay in vitro, using biotinylated epsilon-peptide as a substrate. Furthermore, dominant-negative PKC-zeta inhibits, while (wild-type) PKC-zeta overexpression enhances MAPK activation by PDGF and PC-PLC. The results suggest that DG generated by PC-PLC can activate the MAPK pathway independent of Ras and phorbol-ester-sensitive PKC but, instead, via PKC-zeta.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Diglicéridos/metabolismo , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Fosfolipasas de Tipo C/metabolismo , Animales , Células COS , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Sustancias de Crecimiento/farmacología , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Indoles/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Proteína Quinasa 1 Activada por Mitógenos , Mitosis/efectos de los fármacos , Ésteres del Forbol/farmacología , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteínas Tirosina Quinasas/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Transfección , Proteínas ras/fisiología
5.
Plant Physiol ; 111(3): 857-65, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8754686

RESUMEN

A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed.


Asunto(s)
Avena/metabolismo , Calcio/farmacología , Ácidos Grasos no Esterificados/farmacología , Glicósidos/farmacología , Proteínas de Plantas , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/fisiología , Secuencia de Aminoácidos , Activación Enzimática , Cinética , Datos de Secuencia Molecular , Especificidad por Sustrato
6.
Eur J Biochem ; 219(3): 1023-9, 1994 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-8112315

RESUMEN

The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [3H]fusicoccin binding to almost zero in a concentration-dependent way, with an optimum at approximately 20 mM sodium fluoride. The presence of magnesium (> 100 microM) was required for the inhibitory action of fluoride, whereas addition of low amounts of aluminum (25 microM) shifted the fluoride optimum to lower concentrations. Fluoride changes the biochemical properties of the binding protein in a reversible manner, because the inhibition was both prevented and reversed by 1 M ammonium sulphate. The combined effects of aluminium, fluoride and magnesium are reminiscent of the action of activated GTP-binding proteins. Since no functional assay for GTP-binding-protein activity in plants is available yet, GTP-binding-protein activation by fluoride and magnesium was deduced from competition with binding of [gamma-35S]GTP[S] to purified plasma membranes. Indeed, fluoride (20 mM) completely blocked the specific binding of [gamma-35S]GTP[S]. It is concluded that the inhibitory effect of fluoride upon the binding of fusicoccin is indirect and mediated through activated GTP-binding proteins. A hypothesis on the mechanism of fusicoccin action is presented wherein the fusicoccin-binding protein is one component of a signal-transduction chain, two or more steps downstream of a heterotrimeric GTP-binding protein.


Asunto(s)
Compuestos de Aluminio/farmacología , Fluoruros/farmacología , Proteínas de Unión al GTP/metabolismo , Glicósidos/metabolismo , Magnesio/farmacología , Proteínas de Plantas , Receptores de Superficie Celular/metabolismo , Acetona/química , Sitios de Unión/efectos de los fármacos , Membrana Celular/metabolismo , Grano Comestible/metabolismo , Glucósidos/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/farmacología , Transducción de Señal/efectos de los fármacos , Fluoruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA