Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biopharm Drug Dispos ; 36(7): 462-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25963583

RESUMEN

The current study was designed to cross-validate rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and the isolated perfused rat liver (IPRL) model against in vivo pharmacokinetic data, using verapamil as a model drug. Michaelis-Menten constants (Km), for the metabolic disappearance kinetics of verapamil in RLM and SRH (freshly isolated and cryopreserved), were determined and corrected for non-specific binding. The 'unbound' Km determined with RLM (2.8 µM) was divided by the 'unbound' Km determined with fresh and cryopreserved SRH (3.9 µM and 2.1 µM, respectively) to calculate the ratio of intracellular to extracellular unbound concentration (Kpu,u). Kpu,u was significantly different between freshly isolated (0.71) and cryopreserved (1.31) SRH, but intracellular capacity for verapamil metabolism was maintained after cryopreservation (200 vs. 191 µl/min/million cells). Direct comparison of intrinsic clearance values (Clint) in RLM versus SRH, yielded an activity-based scaling factor (SF) of 0.28-0.30 mg microsomal protein/million cells (MPPMC). Merging the IPRL-derived Clint with the MPPMC and SRH data, resulted in scaling factors for MPPGL (80 and 43 mg microsomal protein/g liver) and HPGL (269 and 153 million cells/g liver), respectively. Likewise, the hepatic blood flow (61 ml/min/kg b.wt) was calculated using IPRL Clint and the in vivo Cl. The scaling factors determined here are consistent with previously reported CYP450-content based scaling factors. Overall, the results show that integrated interpretation of data obtained with multiple preclinical tools (i.e. RLM, SRH, IPRL) can contribute to more reliable estimates for scaling factors and ultimately to improved in vivo clearance predictions based on in vitro experimentation.


Asunto(s)
Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Modelos Animales , Verapamilo/metabolismo , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Microsomas Hepáticos/efectos de los fármacos , Ratas , Verapamilo/farmacología
2.
J Med Genet ; 45(6): 376-83, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18285423

RESUMEN

BACKGROUND: Peroxisome biogenesis disorders are a clinically and genetically heterogeneous group of very severe autosomal recessive disorders caused by impaired peroxisome biogenesis. The prototype of this group of disorders is the cerebro-hepato-renal syndrome of Zellweger. METHODS AND RESULTS: Here we report a patient with Zellweger syndrome, who presented at the age of 3 months with icterus, dystrophy, axial hypotonia, facial dysmorphy, posterior embryotoxon, and hepatomegaly. Abnormal findings of metabolic screening tests included hyperbilirubinaemia, hypoketotic dicarboxylic aciduria, increased C(26:0) and decreased C(22:0) plasma levels, and strongly reduced plasmalogen concentrations. In fibroblasts, both peroxisomal alpha- and beta-oxidation were impaired. Liver histology revealed bile duct paucity, cholestasis, arterial hyperplasia, very small branches of the vena portae, and parenchymatic destruction. Immunocytochemical analysis of cultured fibroblasts demonstrated that the cells contain peroxisomal remnants lacking apparent matrix protein content and PEX14, a central membrane component of the peroxisomal matrix protein import machinery. Transfection of fibroblasts with a plasmid coding for wild-type PEX14 restored peroxisomal matrix protein import, indicating that the primary genetic defect affecting the patient is indeed linked to PEX14. Mutational analysis of this gene revealed a genomic deletion leading to the deletion of exon 3 from the coding DNA (c.85-?_170+?del) and a concomitant change of the reading frame (p.[Ile29_Lys56del;Gly57GlyfsX2]). CONCLUSIONS: This report represents the second PEX14-deficiency associated with Zellweger syndrome and the first documentation of a PEX14-deficient patient with detailed clinical follow-up and biochemical, morphological, and radiological data.


Asunto(s)
Proteínas de la Membrana/genética , Mutación/genética , Proteínas Represoras/genética , Síndrome de Zellweger/genética , Secuencia de Bases , Análisis Mutacional de ADN , ADN Intergénico , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Immunoblotting , Lactante , Hígado/ultraestructura , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Peroxisomas/metabolismo
3.
Biochem Soc Trans ; 35(Pt 5): 876-80, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17956236

RESUMEN

2-Hydroxyphytanoyl-CoA lyase (abbreviated as 2-HPCL), renamed to 2-hydroxyacyl-CoA lyase (abbreviated as HACL1), is the first peroxisomal enzyme in mammals that has been found to be dependent on TPP (thiamin pyrophosphate). It was discovered in 1999, when studying alpha-oxidation of phytanic acid. HACL1 has an important role in at least two pathways: (i) the degradation of 3-methyl-branched fatty acids like phytanic acid and (ii) the shortening of 2-hydroxy long-chain fatty acids. In both cases, HACL1 catalyses the cleavage step, which involves the splitting of a carbon-carbon bond between the first and second carbon atom in a 2-hydroxyacyl-CoA intermediate leading to the production of an (n-1) aldehyde and formyl-CoA. The latter is rapidly converted into formate and subsequently to CO(2). HACL1 is a homotetramer and has a PTS (peroxisomal targeting signal) at the C-terminal side (PTS1). No deficiency of HACL1 has been described yet in human, but thiamin deficiency might affect its activity.


Asunto(s)
Ácidos Grasos/metabolismo , Liasas/metabolismo , Peroxisomas/metabolismo , Animales , Ácidos Grasos/química , Tiamina/metabolismo
4.
Cell Mol Life Sci ; 63(14): 1686-99, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16791427

RESUMEN

Pex19p exhibits a broad binding specificity for peroxisomal membrane proteins (PMPs), and is essential for the formation of functional peroxisomal membranes. Pex19p orthologues contain a C-terminal CAAX motif common to prenylated proteins. In addition, Saccharomyces cerevisiae and Chinese hamster Pex19p are at least partially farnesylated in vivo. Whether farnesylation of Pex19p plays an essential or merely ancillary role in peroxisome biogenesis is currently not clear. Here, we show that (i) nonfarnesylated and farnesylated human Pex19p display a similar affinity towards a select set of PMPs, (ii) a variant of Pex19p lacking a functional farnesylation motif is able to restore peroxisome biogenesis in Pex19p-deficient cells, and (iii) peroxisome protein import is not affected in yeast and mammalian cells defective in one of the enzymes involved in the farnesylation pathway. Summarized, these observations indicate that the CAAX box-mediated processing steps of Pex19p are dispensable for peroxisome biogenesis in yeast and mammalian cells.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Peroxisomas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/química , Transferasas Alquil y Aril/metabolismo , Secuencias de Aminoácidos , Animales , Células CHO , Línea Celular Transformada , Secuencia de Consenso , Cricetinae , Cricetulus , Fibroblastos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Ácido Oléico/metabolismo , Peroxisomas/ultraestructura , Prenilación de Proteína/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia , Relación Estructura-Actividad , Transfección
5.
Cell Mol Life Sci ; 63(13): 1553-63, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16786225

RESUMEN

The identification of 2-hydroxyphytanoyl-CoA lyase (2-HPCL), a thiamine pyrophosphate (TPP)-dependent peroxisomal enzyme involved in the alpha-oxidation of phytanic acid and of 2-hydroxy straight chain fatty acids, pointed towards a role of TPP in these processes. Until then, TPP had not been implicated in mammalian peroxisomal metabolism. The effect of thiamine deficiency on 2-HPCL and alpha-oxidation has not been studied, nor have possible adverse effects of deficient alpha-oxidation been considered in the pathogenesis of diseases associated with thiamine shortage, such as thiamine-responsive megaloblastic anemia (TRMA). Experiments with cultured cells and animal models showed that alpha-oxidation is controlled by the thiamine status of the cell/tissue/organism, and suggested that some pathological consequences of thiamine starvation could be related to impaired alpha-oxidation. Whereas accumulation of phytanic acid and/or 2-hydroxyfatty acids or their alpha-oxidation intermediates in TRMA patients given a normal supply of thiamine is unlikely, this may not be true when malnourished.


Asunto(s)
Anemia Megaloblástica/metabolismo , Ácidos Grasos/metabolismo , Ácido Fitánico/metabolismo , Deficiencia de Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Animales , Liasas de Carbono-Carbono/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Ratones , Oxidación-Reducción , Ratas , Ratas Wistar , Tiamina/metabolismo
6.
J Neuropathol Exp Neurol ; 61(4): 368-74, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11939592

RESUMEN

The purpose of this study was to investigate whether deficient peroxisomal beta-oxidation is causally involved in the neuronal migration defect observed in Pex5 knockout mice. These mice are models for Zellweger syndrome, a peroxisome biogenesis disorder. Neocortical development was evaluated in mice carrying a partial or complete defect of peroxisomal beta-oxidation at the level of the second enzyme of the pathway, namely, the hydratase-dehydrogenase multifunctional/bifunctional enzymes MFP1/L-PBE and MFP2/D-PBE. In contrast to patients with multifunctional protein 2 deficiency who present with neocortical dysgenesis, impairment of neuronal migration was not observed in the single MFP2 or in the double MFP1/MFP2 knockout mice. At birth, the double knockout pups displayed variable growth retardation and about one half of them were severely hypotonic, whereas the single MFP2 knockout animals were all normal in the perinatal period. These results indicate that in the mouse, defective peroxisomal beta-oxidation does not cause neuronal migration defects by itself. This does not exclude that the inactivity of this metabolic pathway contributes to the brain pathology in mice and patients with complete absence of functional peroxisomes.


Asunto(s)
Movimiento Celular/fisiología , Neuronas/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Síndrome de Zellweger/enzimología , Animales , Química Encefálica , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Oxidación-Reducción , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Receptores Citoplasmáticos y Nucleares/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/fisiopatología
7.
Comb Chem High Throughput Screen ; 4(7): 545-52, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11669066

RESUMEN

Recently, we reported the successful use of the gVI-cDNA phage display technology to clone cDNAs coding for novel peroxisomal enzymes by affinity selection using immobilized antisera directed against peroxisomal subfractions (Fransen, M.; Van Veldhoven, P.P.; Subramani, S. Biochem. J., 1999, 340, 561-568). To identify other unknown peroxisomal enzymes, we further exploited this promising approach. Here we report the isolation and cloning of another novel human cDNA encoding a protein ending in the tripeptide AKL, a C-terminal peroxisomal targeting signal (PTS1). Primary structure analysis revealed that this molecule shared the highest sequence similarity to members of the 2,4-dienoyl-CoA reductase (DCR) family. However, functional analysis indicated that a recombinantly expressed version of the novel protein did not possess DCR activity with either 2-trans,4-trans-hexadienoyl-CoA or 2-trans,4-trans-decadienoyl-CoA as a substrate. The recombinant protein interacted with HsPex5p, the human PTS1-binding protein. Binding was competitively inhibited by a PTS1-containing peptide and was abolished when the last amino acid of the PTS1 signal was deleted. Transfection of mammalian cells with gene fusions between green fluorescent protein (GFP) and the human cDNA confirmed a peroxisomal localization and, therefore, the functionality of the PTS1. These results further demonstrate the suitability of the gVI-cDNA phage display technology for cDNA expression cloning using an antibody as a probe.


Asunto(s)
Bacteriófago M13/enzimología , Ácido Graso Desaturasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Peroxisomas/enzimología , Proteínas Virales de Fusión/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Escherichia coli/metabolismo , Técnicas In Vitro , Datos de Secuencia Molecular , Conejos , Saccharomyces cerevisiae/metabolismo
8.
J Vasc Res ; 38(5): 479-91, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11561150

RESUMEN

We investigated the possible interference of smooth muscle cells with monocyte response to LDL as well as with their adhesion and transmigration in a coculture of porcine endothelial and smooth muscle cells. Lysophosphatidylcholine (LPC), a component of oxidized LDL (oxLDL), stimulated the adhesion of THP-1 cells to endothelial cells both in mono- and in coculture with smooth muscle cells. When THP-1 cells were incubated with endothelial cells in the presence of copper oxLDL, their adhesion was increased, but only in coculture. The addition of sodium nitroprusside (SNP) together with oxLDL markedly increased the adhesion of THP-1 cells in coculture. Close proximity between endothelial and smooth muscle cells was necessary to observe that effect. Furthermore, this increase in adhesion of THP-1 cells can, at least in part, be attributed to the augmented production of monocyte chemoattractant protein-1 (MCP-1) observed in coculture under the influence of oxLDL and SNP. The passage of THP-1 cells through the coculture was stimulated by MCP-1 and LPC. These results show that physical contacts or close proximity between endothelial and smooth muscle cells play a key role in the adhesion of monocytes and their infiltration into the intima in response to oxLDL.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Lipoproteínas LDL/farmacología , Monocitos/efectos de los fármacos , Monocitos/fisiología , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Animales , Quimiocina CCL2/análisis , Técnicas de Cocultivo , Medios de Cultivo , Endotelio Vascular/citología , Endotelio Vascular/fisiología , Ensayo de Inmunoadsorción Enzimática , Lisofosfatidilcolinas/farmacología , Microscopía Confocal , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Arteria Pulmonar , Porcinos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
9.
Biochim Biophys Acta ; 1533(1): 66-72, 2001 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-11514237

RESUMEN

Based on the primary structure of the rat peroxisomal 2,4-dienoyl-CoA reductase (M. Fransen, P.P. Van Veldhoven, S. Subramani, Biochem. J. 340 (1999) 561-568), the cDNA of the human counterpart was cloned. It contained an open reading frame of 878 bases encoding a protein of 291 amino acids (calculated molecular mass 30778 Da), being 83% identical to the rat reductase. The gene, encompassing nine exons, is located at chromosome 16p13. Bacterially expressed poly(His)-tagged reductase was active not only towards short and medium chain 2,4-dienoyl-CoAs, but also towards 2,4,7,10,13,16,19-docosaheptaenoyl-CoA. Hence, the reductase does not seem to constitute a rate limiting step in the peroxisomal degradation of docosahexaenoic acid. The reduction of docosaheptaenoyl-CoA, however, was severely decreased in the presence of albumin.


Asunto(s)
Ácido Graso Desaturasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Peroxisomas/enzimología , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/biosíntesis , ADN Complementario/química , Ácidos Docosahexaenoicos/metabolismo , Ácido Graso Desaturasas/biosíntesis , Ácido Graso Desaturasas/química , Humanos , Cinética , Datos de Secuencia Molecular
10.
Biochem J ; 357(Pt 3): 635-46, 2001 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-11463335

RESUMEN

Based on peroxin protein 5 (Pex5p) homology searches in the expressed sequence tag database and sequencing of large full-length cDNA inserts, three novel and related human cDNAs were identified. The brain-derived cDNAs coded for two related proteins that differ only slightly at their N-terminus, and exhibit 39.8% identity to human PEX5p. The shorter liver-derived cDNA coded for the C-terminal tetratricopeptide repeat-containing domain of the brain cDNA-encoded proteins. Since these three proteins specifically bind to various C-terminal peroxisome-targeting signals in a manner indistinguishable from Pex5p and effectively compete with Pex5p in an in vitro peroxisome-targeting signal 1 (PTS1)-binding assay, we refer to them as 'Pex5p-related proteins' (Pex5Rp). In contrast to Pex5p, however, human PEX5Rp did not bind to Pex14p or to the RING finger motif of Pex12p, and could not restore PTS1 protein import in Pex5(-/-) mouse fibroblasts. Immunofluorescence analysis of epitope-tagged PEX5Rp in Chinese hamster ovary cells suggested an exclusively cytosolic localization. Northern-blot analysis showed that the PEX5R gene, which is localized to chromosome 3q26.2--3q27, is expressed preferentially in brain. Mouse PEX5Rp was also delineated. In addition, experimental evidence established that the closest-related yeast homologue, YMR018wp, did not bind PTS1. Based on its subcellular localization and binding properties, Pex5Rp may function as a regulator in an early step of the PTS1 protein import process.


Asunto(s)
Encéfalo/metabolismo , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Citosol/metabolismo , ADN Complementario/análisis , ADN Complementario/aislamiento & purificación , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Conejos , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido
11.
Eur J Clin Invest ; 31(8): 714-22, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11473573

RESUMEN

BACKGROUND: 2-Methylacyl-CoA racemase interconverts the 2-methyl group of pristanoyl-CoA or the 25-methyl group of hydroxylated cholestanoyl-CoAs, allowing further peroxisomal desaturation of these compounds in man by the branched chain acyl-CoA oxidase, which recognise only the S-isomers. Hence, oxidation studies in fibroblasts, currently based on the use of racemic substrates such as [1-14C] pristanic acid, do not allow us to distinguish between a deficient racemase or an impaired oxidase. DESIGN: To evaluate the racemase activity directly, the 2R-isomer of[1-14C] pristanic acid, as well as the 2R-isomer of 2-methyl-[1-14C] hexadecanoic, a synthetic pristanic acid substitute, were prepared and their degradation by cultured human skin fibroblasts was compared to that of the racemic substrates. RESULTS: In fibroblasts in a young girl, presenting with elevated urinary levels of trihydroxycholestanoic acid metabolites but normal plasma levels of very long chain fatty acids, a partial deficient degradation of racemic [1-14C] pristanic acid was observed. Incorporation of 2R-[1-14C] pristanic acid in glycerolipids of the patient's fibroblasts proceeded normally, but breakdown was impaired. Similar findings were seen with the 2R-isomer of 2-methyl-[1-14C] hexadecanoic. These data, combined with the fact that the branched chain acyl-CoA oxidase, catalyzing the first oxidation step of pristanic acid and bile acid intermediates in man, appeared normal, suggested a peroxisomal beta-oxidation defect in the patient at the level of 2-methylacyl-CoA racemase. CONCLUSION: Carboxy-labelled 2R-methyl branched chain fatty acids might be useful tools to document cases of racemase deficiencies. Because a brother of the patient died with a diagnosis of vitamin K deficiency, an impaired racemase might be responsible for other cases of unexplicable malabsorption.


Asunto(s)
Síndromes de Malabsorción/etiología , Trastorno Peroxisomal/enzimología , Peroxisomas/enzimología , Racemasas y Epimerasas/deficiencia , Deficiencia de Vitamina K/etiología , Células Cultivadas , Ácidos Grasos/síntesis química , Ácidos Grasos/metabolismo , Femenino , Fibroblastos/enzimología , Fibroblastos/metabolismo , Humanos , Recién Nacido , Isomerismo , Oxidación-Reducción , Ácidos Palmíticos/síntesis química , Ácidos Palmíticos/metabolismo , Piel/citología
12.
Lipids ; 36(4): 367-72, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11383687

RESUMEN

The goal of this study was to clarify the mechanism responsible for the catabolism of alpha-tocopherol. The vitamin, bound to albumin, was incubated with rat liver microsomes and appeared to be broken down. Optimal production of the metabolite was obtained when 1 mg of microsomal protein was incubated with 36 microM of alpha-tocopherol in the presence of 1.5 mM of NADPH. Chromatographic and mass spectrometric analyses of the metabolite led to the conclusion that it consists of an omega-acid with an opened chroman ring, although we could not perform nuclear magnetic resonance analysis to confirm this. Our data show that alpha-tocopherol is omega-oxidized to a carboxylic acid and that this process can occur in rat liver microsomes in the presence of NADPH and O2. The oxidation to the quinone structure appears to be a subsequent event that may be artifactual and/or catalyzed by a microsomal enzyme(s).


Asunto(s)
Microsomas Hepáticos/metabolismo , alfa-Tocoferol/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Espectroscopía de Resonancia Magnética , Masculino , NADP/farmacología , Oxidación-Reducción , Oxígeno/farmacología , Ratas , Ratas Wistar
13.
Mol Cell Biol ; 21(13): 4413-24, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11390669

RESUMEN

The molecular machinery underlying peroxisomal membrane biogenesis is not well understood. The observation that cells deficient in the peroxins Pex3p, Pex16p, and Pex19p lack peroxisomal membrane structures suggests that these molecules are involved in the initial stages of peroxisomal membrane formation. Pex19p, a predominantly cytosolic protein that can be farnesylated, binds multiple peroxisomal integral membrane proteins, and it has been suggested that it functions as a soluble receptor for the targeting of peroxisomal membrane proteins (PMPs) to the peroxisome. An alternative view proposes that Pex19p functions as a chaperone at the peroxisomal membrane. Here, we show that the peroxisomal sorting determinants and the Pex19p-binding domains of a number of PMPs are distinct entities. In addition, we extend the list of peroxins with which human Pex19p interacts to include the PMP Pex16p and show that Pex19p's CaaX prenylation motif is an important determinant in the affinity of Pex19p for Pex10p, Pex11pbeta, Pex12p, and Pex13p.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Fraccionamiento Celular , Cricetinae , Genes Reporteros/genética , Humanos , Proteínas de la Membrana/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Peroxisomas/química , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Técnicas del Sistema de Dos Híbridos
14.
Biochim Biophys Acta ; 1532(1-2): 37-50, 2001 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11420172

RESUMEN

The enzymatic phosphorylation of sphingoid bases was analysed in rat tissues, using D-erythro-[4,5-(3)H]sphinganine as substrate. After optimisation of the assay, taking care to block sphingosine-phosphate lyase and sphingosine phosphatase, highest ATP-dependent kinase activities were present in testis, followed by kidney, and intestinal mucosa. Approximately two thirds of the kidney activity were membrane bound, the remaining being cytosolic. Classical cell fractionation studies of kidney and liver did not allow to identify unequivocally the subcellular site of the membrane bound kinase. Separation of a particulate fraction from kidney homogenates by Percoll gradient and sucrose density gradient centrifugation revealed that kinase activities are associated with vesicles derived from the endoplasmic reticulum and the plasma membrane. Based on indirect data, such as the effect of detergents and divalent ions, the cytosolic and both membrane bound activities appear to reside in different proteins. N,N-Dimethylsphingenine was inhibitory to all three different kinases, which were mainly active towards the D-erythro isomers of sphingenine and sphinganine.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Riñón/enzimología , Hígado/enzimología , Masculino , Fosforilación , Ratas , Ratas Wistar , Fracciones Subcelulares/enzimología
15.
Biochem Soc Trans ; 29(Pt 2): 292-8, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11356170

RESUMEN

Mammalian peroxisomes degrade fatty carboxylates via two pathways, beta-oxidation and, as shown more recently, alpha-oxidation. The latter process consists of an activation step, followed by a hydroxylation at position 2 and cleavage of the 2-hydroxyacyl-CoA, generating formyl-CoA (precursor of formate/CO(2)) and, in case of phytanic acid as substrate, pristanal (precursor of pristanic acid). The stereochemistry of the overall pathway, cofactor requirements and substrate specificity of the hydroxylase and the cleavage enzyme, which is homologous with bacterial oxalyl-CoA decarboxylases, will be discussed. With regard to beta-oxidation, peroxisomes contain different acyl-CoA oxidases, multifunctional proteins and thiolases. Based on substrate spectra and stereospecificities of these enzymes, a model was proposed whereby straight chain and branched compounds are degraded by separate pathways. The biochemical findings in mice lacking the D-specific multifunctional protein, however, do not fully support this model. These animals, together with the Pex5(-/-) mice, might be useful to pinpoint the pathological factors contributing to the brain abnormalities in Zellweger patients. Apparently, the deficit in docosahexaenoic acid, presumably formed via peroxisomal beta-oxidation, is not the major cause.


Asunto(s)
Metabolismo de los Lípidos , Peroxisomas/metabolismo , Animales , Dióxido de Carbono/metabolismo , Humanos , Lípidos/química , Ratones , Ratones Noqueados , Modelos Animales , Oxidación-Reducción , Oxidorreductasas/metabolismo , Peroxisomas/enzimología
16.
Biochem J ; 353(Pt 3): 673-80, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11171065

RESUMEN

The ontogeny of the following peroxisomal metabolic pathways was evaluated in mouse liver and brain: alpha-oxidation, beta-oxidation and ether phospholipid synthesis. In mouse embryos lacking functional peroxisomes (PEX5(-/-) knock-out), a deficiency of plasmalogens and an accumulation of the very-long-chain fatty acid C(26:0) was observed in comparison with control littermates, indicating that ether phospholipid synthesis and beta-oxidation are already active at mid-gestation in the mouse. Northern analysis revealed that the enzymes required for the beta-oxidation of straight-chain substrates are present in liver and brain during embryonic development but that those responsible for the degradation of branched-chain substrates are present only in liver from late gestation onwards. The expression pattern of transcripts encoding enzymes of the alpha-oxidation pathway suggested that alpha-oxidation is initiated in the liver around birth and is not active in brain throughout development. Remarkably, a strong induction of the mRNA levels of enzymes involved in alpha-oxidation and beta-oxidation was observed around birth in the liver. In contrast, enzyme transcripts that were expressed in brain were present at rather constant levels throughout prenatal and postnatal development. These results suggest that the defective ether phospholipid synthesis and/or peroxisomal beta-oxidation of straight-chain fatty acids might be involved in the pathogenesis of the prenatal organ defects in peroxisome-deficient mice and men.


Asunto(s)
Peroxisomas/metabolismo , Fosfolípidos/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/metabolismo , Desarrollo Embrionario y Fetal , Femenino , Hígado/enzimología , Hígado/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Peroxisomas/enzimología , Embarazo
17.
Lipids ; 35(10): 1117-25, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11104018

RESUMEN

The introduction of the double bond in the sphingoid backbone of sphingolipids occurs at the level of dihydroceramide via an NADPH-dependent desaturase, as discovered in permeabilized rat hepatocytes. In the rat, the enzyme activity, which has now been further characterized, appeared to be mostly enriched in liver and Harderian gland. By means of subcellular fractionation of rat liver homogenates and density gradient separation of microsomal fractions, the desaturase was localized to the endoplasmic reticulum. Various detergents were inhibitory to the enzyme, and maximal activities were obtained in the presence of NADPH and when the substrate was complexed to albumin. In the presence of albumin, the chain length of the fatty acid of the truncated dihydroceramides hardly affected the activity. Finally, in view of a likely evolutionary relationship between desaturases and hydroxylases, the formation of hydroxylated intermediates was analyzed. No evidence for their presence was found under our assay conditions.


Asunto(s)
Oxidorreductasas/química , Oxidorreductasas/farmacocinética , Albúminas/metabolismo , Animales , Centrifugación por Gradiente de Densidad , Ceramidas/biosíntesis , Ceramidas/química , Detergentes/farmacología , Retículo Endoplásmico/metabolismo , Glándula de Harder/metabolismo , Hígado/metabolismo , Masculino , Microsomas Hepáticos/metabolismo , Modelos Químicos , NADP/metabolismo , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Distribución Tisular
18.
J Lipid Res ; 41(11): 1752-9, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11060344

RESUMEN

2-Methylacyl-CoA racemase is an auxiliary enzyme required for the peroxisomal beta-oxidative breakdown of (2R)-pristanic acid and the (25R)-isomer of C(27) bile acid intermediates. The enzyme activity is found not only in peroxisomes but also is present in mitochondria of human liver and fibroblasts. The C terminus of the human racemase, a protein of 382 amino acids with a molecular mass of 43,304 daltons as deduced from its cloned cDNA, consists of KASL. Hitherto this sequence has not been recognized as a peroxisomal targeting signal (PTS1). From the in vitro interaction between recombinant racemase and recombinant human PTS1 receptor (Pex5p), and the peroxisomal localization of green fluorescent protein (GFP) fused to the N terminus of full-length racemase or its last six amino acids in tranfected Chinese hamster ovary (CHO) cells, we concluded that ASL is a new PTS1 variant. To be recognized by Pex5p, however, the preceding lysine residue is critical. As shown in another series of transfection experiments with GFP fused to the C terminus of the full-length racemase or racemase with deletions of the N terminus, mitochondrial targeting information is localized between amino acids 22 and 85.Hence, our data show that a single transcript gives rise to a racemase protein containing two topogenic signals, explaining the dual cellular localization of the activity.


Asunto(s)
Hígado/ultraestructura , Mitocondrias Hepáticas/enzimología , Peroxisomas/enzimología , Racemasas y Epimerasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO , Cricetinae , Proteínas Fluorescentes Verdes , Humanos , Hígado/enzimología , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Racemasas y Epimerasas/química , Racemasas y Epimerasas/genética , Ratas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia , Transfección
19.
Biochim Biophys Acta ; 1487(2-3): 128-34, 2000 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-11018465

RESUMEN

Sphingosine-1-phosphate lyase catalyzes the last step in sphingolipid breakdown, the cleavage of phosphorylated sphingoid bases such as sphingenine-1-phosphate. The latter lipid is not only a catabolite, but can influence as an inter- and/or intracellular second messenger many cellular processes. To allow for the diagnosis of human disorders that might be linked to a deficient lyase, the human sphingosine-1-phosphate lyase cDNA was cloned. The obtained cDNA encoded a protein of 568 amino acids with a calculated molecular mass of 63492 Da. Hydropathy plots revealed the presence of one membrane span near the amino-terminal which is however not required for enzyme activity since recombinant poly-His-tagged lyase, lacking this membrane span, was functionally active. Site-directed mutagenesis disclosed the importance of the cysteine residues 218 and 317 for the cleavage reaction. Northern analysis showed the presence of rare large-sized mRNAs of 6.7, 5.8 and 4 kb and the highest expression in liver. By fluorescent in situ hybridization, the gene was mapped to chromosome 10q22.


Asunto(s)
Aldehído-Liasas/genética , Cromosomas Humanos Par 10 , Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Mapeo Cromosómico , Clonación Molecular , ADN Complementario/química , Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Alineación de Secuencia
20.
FASEB J ; 14(13): 2032-9, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11023987

RESUMEN

Macrophage infiltration into the subendothelial space at lesion prone sites is the primary event in atherogenesis. Inhibition of macrophage homing might therefore prevent atherosclerosis. Since HDL levels are inversely correlated with cardiovascular risk, their effect on macrophage homing was assessed in apoE-deficient (apoE-/-) mice. Overexpression of human apolipoprotein AI in apoE-/- mice increased HDL levels 3-fold and reduced macrophage accumulation in an established assay of leukocyte homing to aortic root endothelium 3.2-fold (P<0.005). This was due to reduced in vivo betaVLDL oxidation, reduced betaVLDL triggered endothelial cytosolic Ca2+ signaling through PAF-like bioactivity, lower ICAM-1 and VCAM-1 expression, and diminished ex vivo leukocyte adhesion. Adenoviral gene transfer of human PAF-acetylhydrolase (PAF-AH) in apoE-/- mice increased PAF-AH activity 1.5-fold (P<0.001), reduced betaVLDL-induced ex vivo macrophage adhesion 3.5-fold (P<0.01), and reduced in vivo macrophage homing 2.6-fold (P<0.02). These inhibitory effects were observed in the absence of increased HDL cholesterol levels. In conclusion, HDL reduces macrophage homing to endothelium by reducing oxidative stress via its associated PAF-AH activity. This protective mechanism is independent of the function of HDL as cholesterol acceptor. Modulation of lipoprotein oxidation by PAF-AH may prevent leukocyte recruitment to the vessel wall, a key feature in atherogenesis.


Asunto(s)
Apolipoproteínas E/genética , Endotelio Vascular/fisiología , Leucocitos/fisiología , Lipoproteínas HDL/metabolismo , Macrófagos Peritoneales/fisiología , Fosfolipasas A/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Animales , Apolipoproteína A-I/biosíntesis , Arteriosclerosis , Señalización del Calcio , Adhesión Celular , Colesterol/sangre , Citosol/metabolismo , Humanos , Lipoproteínas VLDL/metabolismo , Ratones , Ratones Mutantes , Modelos Biológicos , Estrés Oxidativo/fisiología , Fosfolipasas A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...