Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 31(18): 2323-34, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21996728

RESUMEN

Cell identity is determined by its gene expression programs. The ability of a cell to change its identity and produce cell types outside its lineage is achieved by the activity of transcription controllers capable of reprogramming differentiation gene networks. The synovial sarcoma (SS)-associated protein, SYT-SSX2, reprograms myogenic progenitors and human bone marrow-derived mesenchymal stem cells (BMMSCs) by dictating their commitment to a pro-neural lineage. It fulfills this function by directly targeting an extensive array of neural-specific genes as well as genes of developmental pathway mediators. Concomitantly, the ability of both myoblasts and BMMSCs to differentiate into their normal myogenic and adipogenic lineages was compromised. SS is believed to arise in mesenchymal stem cells where formation of the t(X/18) translocation product, SYT-SSX, constitutes the primary event in the cancer. SYT-SSX is therefore believed to initiate tumorigenesis in its target stem cell. The data presented here allow a glimpse at the initial events that likely occur when SYT-SSX2 is first expressed, and its dominant function in subverting the nuclear program of the stem cell, leading to its aberrant differentiation, as a first step toward transformation. In addition, we identified the fibroblast growth factor receptor gene, Fgfr2, as one occupied and upregulated by SYT-SSX2. Knockdown of FGFR2 in both BMMSCs and SS cells abrogated their growth and attenuated their neural phenotype. These results support the notion that the SYT-SSX2 nuclear function and differentiation effects are conserved throughout sarcoma development and are required for its maintenance beyond the initial phase. They also provide the stem cell regulator, FGFR2, as a promising candidate target for future SS therapy.


Asunto(s)
Linaje de la Célula/genética , Células Madre Mesenquimatosas , Proteínas de Fusión Oncogénica/genética , Sarcoma Sinovial/genética , Diferenciación Celular/genética , Línea Celular , Transformación Celular Neoplásica/genética , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mioblastos/patología , Neuronas/citología , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
2.
Dev Neurobiol ; 67(11): 1488-97, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17525979

RESUMEN

The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction.


Asunto(s)
Matriz Extracelular/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Unión Neuromuscular/enzimología , Rana pipiens/fisiología , Transmisión Sináptica/fisiología , Animales , Activación Enzimática/fisiología , Colorantes Fluorescentes , Unión Neuromuscular/citología , Unión Neuromuscular/efectos de los fármacos , Plasticidad Neuronal/fisiología , Rana pipiens/anatomía & histología , Células de Schwann/enzimología , Bloqueadores de los Canales de Sodio/farmacología , Coloración y Etiquetado/métodos , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
3.
J Neurocytol ; 32(9): 1129-42, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15044844

RESUMEN

Matrix metalloproteinases are important regulators of extracellular matrix molecules and cell-cell signaling. Antibodies to matrix metalloproteinase 3 (MMP3) recognize molecules at the frog neuromuscular junction, and MMP3 can remove agrin from synaptic basal lamina (VanSaun & Werle, 2000). To gain insight into the possible roles of MMP3 at the neuromuscular junction, detailed observations were made on the structure and function of the neuromuscular junctions in MMP3 null mutant mice. Striking differences were found in the appearance of the postsynaptic apparatus of MMP3 null mutant mice. Endplates had an increased volume of AChR stained regions within the endplate structure, leaving only small regions devoid of AChRs. Individual postsynaptic gutters were wider, containing prominent lines that represent the AChRs concentrated at the tops of the junctional folds. Electron microscopy revealed a dramatic increase in the number and size of the junctional folds, in addition to ectopically located junctional folds. Electrophysiological recordings revealed no change in quantal content or MEPP frequency, but there was an increase in MEPP rise time in a subset of endplates. No differences were observed in the rate or extent of developmental synapse elimination. In vitro cleavage experiments revealed that MMP3 directly cleaves agrin. Increased agrin immunofluorescence was observed at the neuromuscular junctions of MMP3 null mutant mice. These results provide strong evidence that MMP3 is involved in the control of synaptic structure at the neuromuscular junction and they support the hypothesis that MMP3 is involved in the regulation of agrin at the neuromuscular junction.


Asunto(s)
Agrina/metabolismo , Metaloproteinasa 3 de la Matriz/deficiencia , Unión Neuromuscular/enzimología , Unión Neuromuscular/patología , Membranas Sinápticas/patología , Transmisión Sináptica/genética , Animales , Diferenciación Celular/genética , Potenciales Postsinápticos Excitadores/genética , Técnica del Anticuerpo Fluorescente , Metaloproteinasa 3 de la Matriz/genética , Ratones , Ratones Noqueados , Microscopía Electrónica , Unión Neuromuscular/fisiopatología , Tiempo de Reacción/genética , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/enzimología , Membranas Sinápticas/ultraestructura , Regulación hacia Arriba/genética
4.
J Neurobiol ; 44(3): 369, 2000 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-10942889
5.
J Neurobiol ; 43(2): 140-9, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10770843

RESUMEN

Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N-terminal region of agrin binds tightly to basal lamina, while the C-terminal region interacts with a muscle-specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase-3 (MMP-3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP-3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP-3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP-3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP-3 treatment does not alter anti-laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP-3 at the neuromuscular junction and that MMP-3 specifically removes agrin from synaptic basal lamina.


Asunto(s)
Agrina/metabolismo , Membrana Basal/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Unión Neuromuscular/metabolismo , Membranas Sinápticas/metabolismo , Animales , Anticuerpos/metabolismo , Especificidad de Anticuerpos , Membrana Basal/efectos de los fármacos , Membrana Basal/ultraestructura , Bungarotoxinas/farmacocinética , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Laminina/metabolismo , Masculino , Metaloproteinasa 3 de la Matriz/farmacología , Microscopía Electrónica , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/inervación , Unión Neuromuscular/ultraestructura , Rana pipiens , Rodaminas , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...