Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 90(8): 085101, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472638

RESUMEN

The development of large size magnetic materials requires nondestructive measurement techniques to characterize their magnetic moment. In this work, we report the design and construction of a torque magnetometer able to accommodate sizable magnetic samples (>1 cm3) both at room temperature and cryogenic temperature. This device has an intermediate sensitivity between miniature torque magnetometers designed to work at cryogenic temperature and industrial torquemeters poorly adapted to extreme conditions. We show that torque sensing in the range 10-3-100 Nm can be achieved with piezoresistive metallic strain gages cemented on a cylindrical aluminum shaft with external temperature control. An absolute calibration of the device, carried out with a coil fed by a DC current, shows that magnetic moments down to 5 × 10-3 A m2 can be measured by this technique. The magnetometer is used to characterize a Nd-Fe-B permanent magnet and a permanently magnetized bulk, large grain superconductor at liquid nitrogen temperature (77 K). Results are in excellent agreement with data obtained with a flux extraction magnetometer for large samples. The device is able to measure magnetic moments in excess of 1.5 A m2, i.e., two orders of magnitude above the maximum magnetic moment of commercial magnetometers. The sample can be inserted in the air-gap of an electromagnet to measure the decrease in magnetic moment in the presence of a transverse applied field. The device was used to characterize the magnetic moment of "quasibulk" superconductors made of stacked coated conductor tapes (12 mm width) in such "crossed field" conditions.

2.
Rev Sci Instrum ; 89(2): 023705, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29495853

RESUMEN

We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

3.
Eur Phys J E Soft Matter ; 39(8): 79, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27562830

RESUMEN

We present an experimental study of a laminar convective phenomenon induced by a centimetric heater totally immersed in a liquid pool (Rayleigh number ranging from 10(4) to 10(7)). This local heating is observed to induce a laminar convection that differs from the classical Rayleigh-Bénard cells created by heating the whole bottom of the fluid: the convection pattern is no more periodic. In order to obtain a complete map of the velocity field, we use Particle Image Velocimetry technique. The vertical velocity between the counter-rotating convective cells is used as the relevant physical parameter to describe the phenomenon. The potential cooling applications of this problem lead us to choose liquid nitrogen as an experimental fluid. We thus compare the results obtained for various temperature gradients in liquid nitrogen with experiments performed at room temperature with silicone oils of various viscosities. The theoretical law for the maximal vertical velocity from classical Rayleigh-Bénard experiments is adapted to the specific geometry investigated by using a new definition for the characteristic wavelength. This length is studied and appears to be dependent on the liquid properties. We finally obtain a remarkable agreement between theory and experimental data.

4.
Rev Sci Instrum ; 86(2): 025107, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25725888

RESUMEN

We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA