Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677188

RESUMEN

In gramineae-soybean intercropping systems, shade stress caused by taller plants impacts soybean growth specifically during the reproductive stage. However, the effects of shade stress on soybean senescence remain largely unexplored. In this research, we applied artificial shade treatments with intensities of 75% (S75) and 50% (S50) to soybean plants at the onset of flowering to simulate the shade stress experienced by soybeans in the traditional and optimized maize-soybean intercropping systems, respectively. Compared to the normal light control, both shade treatments led to a rapid decline in the dry matter content of soybean vegetative organs and accelerated their abscission. Moreover, shade treatments triggered the degradation of chlorophyll and soluble proteins in leaves and increased the expression of genes associated with leaf senescence. Metabolic profiling further revealed that ethylene biosynthesis and signal transduction were induced by shade treatment. In addition, the examination of nitrogen content demonstrated that shade treatments impeded the remobilization of nitrogen in vegetative tissues, consequently reducing the seed nitrogen harvest. It's worth noting that these negative effects were less pronounced under the S50 treatment compared to the S75 treatment. Taken together, this research demonstrates that shade stress during the reproductive stage accelerates soybean senescence and impedes nitrogen remobilization, while optimizing the field layout to improve soybean growth light conditions could mitigate these challenges in the maize-soybean intercropping system.


Asunto(s)
Etilenos , Glycine max , Nitrógeno , Estrés Fisiológico , Glycine max/metabolismo , Glycine max/efectos de la radiación , Glycine max/crecimiento & desarrollo , Nitrógeno/metabolismo , Etilenos/metabolismo , Etilenos/biosíntesis , Senescencia de la Planta , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Clorofila/metabolismo
2.
Nat Plants ; 10(2): 240-255, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278954

RESUMEN

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Asunto(s)
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecosistema
3.
Plant J ; 115(2): 470-479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37036146

RESUMEN

Chemical inhibitors are often implemented for the functional characterization of genes to overcome the limitations associated with genetic approaches. Although it is well established that the specificity of the compound is key to success of a pharmacological approach, off-target effects are often overlooked or simply neglected in a complex biological setting. Here we illustrate the cause and implications of such secondary effects by focusing on piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H) that is frequently used to investigate the involvement of lignin during plant growth and development. When supplied to plants, we found that PA is recognized as a substrate by GRETCHEN HAGEN 3.6 (GH3.6), an amido synthetase involved in the formation of the indole-3-acetic acid (IAA) conjugate IAA-Asp. By competing for the same enzyme, PA interferes with IAA conjugation, resulting in an increase in IAA concentrations in the plant. In line with the broad substrate specificity of the GH3 family of enzymes, treatment with PA increased not only IAA levels but also those of other GH3-conjugated phytohormones, namely jasmonic acid and salicylic acid. Finally, we found that interference with the endogenous function of GH3s potentially contributes to phenotypes previously observed upon PA treatment. We conclude that deregulation of phytohormone homeostasis by surrogate occupation of the conjugation machinery in the plant is likely a general phenomenon when using chemical inhibitors. Our results hereby provide a novel and important basis for future reference in studies using chemical inhibitors.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Ácidos Indolacéticos/farmacología , Benzoatos , Oxigenasas de Función Mixta/genética , Cinamatos/farmacología , Regulación de la Expresión Génica de las Plantas
4.
Proc Natl Acad Sci U S A ; 120(9): e2123301120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827261

RESUMEN

Dehydrodiconiferyl alcohol glucoside (DCG) is a phenylpropanoid-derived plant metabolite with reported cytokinin-substituting and cell-division-promoting activity. Despite its claimed activity, DCG did not trigger morphological changes in Arabidopsis seedlings nor did it alter transcriptional shifts in cell division and cytokinin-responsive genes. In reinvestigating the bioactivity of DCG in its original setting, the previously described stimulation of tobacco callus formation could not be confirmed. No evidence was found that DCG is actually taken up by plant cells, which could explain the absence of any observable activity in the performed experiments. The DCG content in plant tissue increased when feeding explants with the DCG aglycone dehydrodiconiferyl alcohol, which is readily taken up and converted to DCG by plant cells. Despite the increased DCG content, no activity for this metabolite could be demonstrated. Our results therefore demand a reevaluation of the often-quoted cytokinin-substituting and cell-division-promoting activity that has previously been attributed to this metabolite.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocininas/metabolismo , Glucósidos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant Direct ; 6(12): e465, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36545006

RESUMEN

The phenylpropanoid cinnamic acid (CA) is a plant metabolite that can occur under a trans- or cis-form. In contrast to the proven bioactivity of the cis-form (c-CA), the activity of trans-CA (t-CA) is still a matter of debate. We tested both compounds using a submerged rice coleoptile assay and demonstrated that they have opposite effects on cell elongation. Notably, in the tip of rice coleoptile t-CA showed an inhibiting and c-CA a stimulating activity. By combining transcriptomics and (untargeted) metabolomics with activity assays and genetic and pharmacological experiments, we aimed to explain the underlying mechanistic processes. We propose a model in which c-CA treatment activates proton pumps and stimulates acidification of the apoplast, which in turn leads to the loosening of the cell wall, necessary for elongation. We hypothesize that c-CA also inactivates auxin efflux transporters, which might cause a local auxin accumulation in the tip of the coleoptile. For t-CA, the phenotype can partially be explained by a stimulation of cell wall polysaccharide feruloylation, leading to a more rigid cell wall. Metabolite profiling also demonstrated that salicylic acid (SA) derivatives are increased upon t-CA treatment. As SA is a known antagonist of auxin, the shift in SA homeostasis provides an additional explanation of the observed t-CA-mediated restriction on cell growth.

6.
Front Plant Sci ; 13: 995402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160989

RESUMEN

The potential of whole genome duplication to increase plant biomass yield is well-known. In Arabidopsis tetraploids, an increase in biomass yield was accompanied by a reduction in lignin content and, as a result, a higher saccharification efficiency was achieved compared with diploid controls. Here, we evaluated whether the results obtained in Arabidopsis could be translated into poplar and whether the enhanced saccharification yield upon alkaline pretreatment of hairpin-downregulated CINNAMYL ALCOHOL DEHYDROGENASE1 (hpCAD) transgenic poplar could be further improved upon a whole genome duplication. Using a colchicine treatment, wild-type (WT) Populus tremula x P. alba cv. INRA 717-1B4, a commonly used model clone in tree biotechnology research, and hpCAD tetraploids were generated and grown in the greenhouse. In parallel, WT tetraploid poplars were grown in the field. In contrast to Arabidopsis, a whole genome duplication of poplar had a negative impact on the biomass yield of both greenhouse- and field-grown trees. Strikingly, field-grown WT tetraploids developed a brittle apex phenotype, i.e., their tip broke off just below the apex. In addition, the chromosome doubling altered the biomass composition of field-grown, but not of greenhouse-grown tetraploid poplars. More specifically, the lignin content of field-grown tetraploid poplars was increased at the expense of matrix polysaccharides. This increase in lignin deposition in biomass is likely the cause of the observed brittle apex phenotype, though no major differences in stem anatomy or in mechanical properties could be found between di- and tetraploid WT poplars grown in the field. Finally, without biomass pretreatment, the saccharification efficiency of greenhouse- and field-grown WT diploids was not different from that of tetraploids, whereas that of greenhouse-grown hpCAD tetraploids was higher than that of greenhouse-grown diploids. Upon alkaline pretreatment, the saccharification yield of diploids was similar to that of tetraploids for all genotypes and growth conditions tested. This study showed that a whole genome duplication in hybrid WT and hpCAD poplar did neither result in further improvements in biomass yield, nor in improved biomass composition and, hence, saccharification performance.

7.
J Exp Bot ; 73(22): 7564-7581, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36124630

RESUMEN

Induced resistance (IR), a phenotypic state induced by an exogenous stimulus and characterized by enhanced resistance to future (a)biotic challenge, is an important component of plant immunity. Numerous IR-inducing stimuli have been described in various plant species, but relatively little is known about 'core' systemic responses shared by these distinct IR stimuli and the effects of IR on plant-associated microbiota. In this study, rice (Oryza sativa) leaves were treated with four distinct IR stimuli (ß-aminobutyric acid, acibenzolar-S-methyl, dehydroascorbic acid, and piperonylic acid) capable of inducing systemic IR against the root-knot nematode Meloidogyne graminicola and evaluated their effect on the root transcriptome and exudome, and root-associated nematode communities. Our results reveal shared transcriptional responses-notably induction of jasmonic acid and phenylpropanoid metabolism-and shared alterations to the exudome that include increased amino acid, benzoate, and fatty acid exudation. In rice plants grown in soil from a rice field, IR stimuli significantly affected the composition of rhizosphere nematode communities 3 d after treatment, but by 14 d after treatment these changes had largely reverted. Notably, IR stimuli did not reduce nematode diversity, which suggests that IR might offer a sustainable option for managing plant-parasitic nematodes.


Asunto(s)
Oryza , Oryza/genética
8.
BMC Biol ; 20(1): 131, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35658860

RESUMEN

BACKGROUND: Generalist herbivores such as the two-spotted spider mite Tetranychus urticae thrive on a wide variety of plants and can rapidly adapt to novel hosts. What traits enable polyphagous herbivores to cope with the diversity of secondary metabolites in their variable plant diet is unclear. Genome sequencing of T. urticae revealed the presence of 17 genes that code for secreted proteins with strong homology to "intradiol ring cleavage dioxygenases (DOGs)" from bacteria and fungi, and phylogenetic analyses show that they have been acquired by horizontal gene transfer from fungi. In bacteria and fungi, DOGs have been well characterized and cleave aromatic rings in catecholic compounds between adjacent hydroxyl groups. Such compounds are found in high amounts in solanaceous plants like tomato, where they protect against herbivory. To better understand the role of this gene family in spider mites, we used a multi-disciplinary approach to functionally characterize the various T. urticae DOG genes. RESULTS: We confirmed that DOG genes were present in the T. urticae genome and performed a phylogenetic reconstruction using transcriptomic and genomic data to advance our understanding of the evolutionary history of spider mite DOG genes. We found that DOG expression differed between mites from different plant hosts and was induced in response to jasmonic acid defense signaling. In consonance with a presumed role in detoxification, expression was localized in the mite's gut region. Silencing selected DOGs expression by dsRNA injection reduced the mites' survival rate on tomato, further supporting a role in mitigating the plant defense response. Recombinant purified DOGs displayed a broad substrate promiscuity, cleaving a surprisingly wide array of aromatic plant metabolites, greatly exceeding the metabolic capacity of previously characterized microbial DOGs. CONCLUSION: Our findings suggest that the laterally acquired spider mite DOGs function as detoxification enzymes in the gut, disarming plant metabolites before they reach toxic levels. We provide experimental evidence to support the hypothesis that this proliferated gene family in T. urticae is causally linked to its ability to feed on an extremely wide range of host plants.


Asunto(s)
Dioxigenasas , Solanum lycopersicum , Tetranychidae , Animales , Dioxigenasas/genética , Herbivoria , Solanum lycopersicum/genética , Filogenia , Plantas , Tetranychidae/genética
9.
New Phytol ; 235(3): 1231-1245, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460590

RESUMEN

Rice diterpenoid phytoalexins (DPs) are secondary metabolites with a well known role in resistance to foliar pathogens. As DPs are also known to be produced and exuded by rice roots, we hypothesised that they might play an important role in plant-nematode interactions, and particularly in defence against phytoparasitic nematodes. We used transcriptome analysis on rice roots to analyse the effect of infection by the root-knot nematode Meloidogyne graminicola or treatment with resistance-inducing chemical stimuli on DP biosynthesis genes, and assessed the susceptibility of mutant rice lines impaired in DP biosynthesis to M. graminicola. Moreover, we grew these mutants and their wild-type in field soil and used metabarcoding to assess the effect of impairment in DP biosynthesis on rhizosphere and root nematode communities. We show that M. graminicola suppresses DP biosynthesis genes early in its invasion process and, conversely, that resistance-inducing stimuli transiently induce the biosynthesis of DPs. Moreover, we show that loss of DPs increases susceptibility to M. graminicola. Metabarcoding on wild-type and DP-deficient plants grown in field soil reveals that DPs significantly alter the composition of rhizosphere and root nematode communities. Diterpenoid phytoalexins are important players in basal and inducible defence against nematode pathogens of rice and help shape rice-associated nematode communities.


Asunto(s)
Diterpenos , Oryza , Tylenchoidea , Animales , Diterpenos/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/genética , Rizosfera , Sesquiterpenos , Suelo , Fitoalexinas
10.
Front Plant Sci ; 12: 734070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567045

RESUMEN

The phenylpropanoid pathway converts the aromatic amino acid phenylalanine into a wide range of secondary metabolites. Most of the carbon entering the pathway incorporates into the building blocks of lignin, an aromatic polymer providing mechanical strength to plants. Several intermediates in the phenylpropanoid pathway serve as precursors for distinct classes of metabolites that branch out from the core pathway. Untangling this metabolic network in Arabidopsis was largely done using phenylpropanoid pathway mutants, all with different degrees of lignin depletion and associated growth defects. The phenotypic defects of some phenylpropanoid pathway mutants have been attributed to differentially accumulating phenylpropanoids or phenylpropanoid-derived compounds. In this perspectives article, we summarize and discuss the reports describing an altered accumulation of these bioactive molecules as the causal factor for the phenotypes of lignin mutants in Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA