Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764537

RESUMEN

The contamination of water by organic substances poses a significant global challenge. To address these pressing environmental and energy concerns, this study emphasizes the importance of developing effective photocatalysts powered by sunlight. In this research, we achieved the successful synthesis of a novel photocatalyst comprised of polymeric carbon nitride (CN) nanosheets embedded with Co3O4 material, denoted as CN-CO. The synthesis process involved subjecting the mixture to 500 °C for 10 h in a muffle furnace. Structural and morphological analyses confirmed the formation of CN-CO nanostructures, which exhibited remarkable enhancements in photocatalytic activity for the removal of methylene blue (MB) pollutants under replicated sunlight. After 90 min of exposure, the degradation rate reached an impressive 98.9%, surpassing the degradation rates of 62.3% for pure CN and 89.32% for pure Co3O4 during the same time period. This significant improvement can be attributed to the exceptional light captivation capabilities and efficient charge separation abilities of the CN-CO nanostructures. Furthermore, the CN-CO nanostructures demonstrated impressive photocurrent density-time (j-t) activity under sunlight, with a photocurrent density of 2.51 µA/cm2 at 0.5 V. The CN-CO nanostructure exhibited excellent methanol oxidation reaction (MOR) activity with the highest current density of 83.71 mA/cm2 at an optimal 2 M methanol concentration, benefiting from the synergy effects of CN and CO in the nanostructure. Overall, this study presents a straightforward and effective method for producing CN-based photocatalysts decorated with semiconductor nanosized materials. The outcomes of this research shed light on the design of nanostructures for energy-related applications, while also providing insights into the development of efficient photocatalytic materials for addressing environmental challenges.

2.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985459

RESUMEN

An innovative form of 2D/0D g-C3N4/CeO2 nanostructure was synthesized using a simple precursor decomposition process. The 2D g-C3N4 directs the growth of 0D CeO2 quantum dots, while also promoting good dispersion of CeO2QDs. This 2D/0D nanostructure shows a capacitance of 202.5 F/g and notable rate capability and stability, outperforming the g-C3N4 electrode, reflecting the state-of-the-art g-C3N4 binary electrodes. The binary combination of materials also enables an asymmetric device (g-C3N4/CeO2QDs//AC) to deliver the highest energy density (9.25 Wh/kg) and power density (900 W/kg). The superior rate capacity and stability endorsed the quantum structural merits of CeO2QDs and layered g-C3N4, which offer more accessible sites for ion transport. These results suggest that the g-C3N4/CeO2QDs nanostructure is a promising electrode material for energy storage devices.

3.
Nanomaterials (Basel) ; 12(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35407278

RESUMEN

In this work, MoSe2-WS2 nanocomposites consisting of WS2 nanoparticles covered with few MoSe2 nanosheets were successfully developed via an easy hydrothermal synthesis method. Their nanostructure and photocatalytic hydrogen evolution (PHE) performance are investigated by a series of characterization techniques. The PHE rate of MoSe2-WS2 is evaluated under the white light LED irradiation. Under LED illumination, the highest PHE of MoSe2-WS2 nanocomposite is 1600.2 µmol g-1 h-1. When compared with pristine WS2, the MoSe2-WS2 nanostructures demonstrated improved PHE rate, which is 10-fold higher than that of the pristine one. This work suggests that MoSe2-WS2 could be a promising photocatalyst candidate and might stimulate the further studies of other layered materials for energy conversion and storage.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34835682

RESUMEN

Due to modernization and the scarcity of fossil fuel resources, energy demand is continuously increasing. In this regard, it is essential and necessary to create a renewable energy source that can meet future energy demands. Recently, the production of H2 by water splitting and removing pollutants from the water has been essential for issues of energy and environmental demands. Herein, g-C3N4 and Ag-g-C3N4 composite structures have been successfully fabricated by the ultrasonication method. The physio/photochemical properties of prepared g-C3N4 and Ag-g-C3N4 were examined with different analytical techniques such as FTIR, XRD, UV-DRS, SEM, TEM, PL, and XPS analyses. The silver quantum dots (QDS) anchored to g-C3N4 structures performed the profound photocatalytic activities of H2 production, dye degradation, and antimicrobial activity under visible-light irradiation. The Ag/g-C3N4 composite with an Ag loading of 0.02 mole has an optimum photoactivity at 335.40 µmol g-1 h-1, which is superior to other Ag loading g-C3N4 composites. The synthesized Ag/g-C3N4 nanoparticles showed potential microbial inhibition activity during the preliminary screening, and the inhibition zones were comparable to the commercial antibiotic chloramphenicol. The loading of Ag into g-C3N4 paves the suppression, recombination and transfer of photo-generated electron-hole pairs, leading to the enhancement of hydrogen production, the diminishment of pollutants in water under visible light irradiation, and antimicrobial activity against multidrug-resistant pathogens.

5.
ACS Omega ; 6(40): 26329-26337, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34660992

RESUMEN

Herbicide compounds containing aromatic rings and chlorine atoms, such as 2,4,5-trichlorophenoxyacetic (2,4,5-T), cause serious environmental pollution. Furthermore, these compounds are very difficult to decompose by chemical, physical, and biological techniques. Fortunately, the high-voltage direct current electrochemical technique can be controlled to form a plasma on metallic electrodes. It creates active species, such as H2, O2, and H2O2, and free radicals, such as H•, O•, and OH•. Free radicals that have a high oxidation potential (e.g., OH•) are highly effective in oxidizing benzene-oring compounds. Iron electrodes are used in the study to combine the dissolving process of the iron anode electrode to create Fe2+ ions and the electrochemical Fenton reaction. In addition, the flocculation process by Fe(OH)2 also occurs and the plasma appears with a voltage of 5 kV on the iron electrode in a solution of 30 mg L-1 of 2,4,5-T. After a period of time of the reaction, the aromatic-oring compounds containing chlorine were effectively treated, and the electric conductivity of the solution increased due to the amount of Cl- ions released in the solution and the decrease in the pH value. The degradable products of 2,4,5-T were qualitatively characterized by gas chromatography-mass spectrometry (GC-MS), and it was determined that straight-chain carboxylic acids are formed in the solution. These compounds are easy to oxidize thoroughly under appropriate conditions in a solution via OH• free radicals. Moreover, 2,4,5-T was also quantitatively analyzed using a calibration curve from GC-MS and high-performance liquid chromatography (HPLC). Furthermore, this work also suggests that the performance of the treatment process can be optimized by controlling the technological factors, such as the input voltage, the distance between anodic and cathodic electrodes, the initial concentration of 2,4,5-T, and flowing air through the solution that represents an approximately 99.83% degradable efficiency. Finally, the work demonstrates a potential technology for treating the 2,4,5-T compound, particularly for environmental pollution treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...