RESUMEN
In giardiasis, diarrhoea, dehydration, malabsorption, weight loss and/or chronic inflammation are indicative of epithelial barrier dysfunction. However, the pathogenesis of giardiasis is still enigmatic in many aspects. Here, we show evidence that a cysteine protease of Giardia duodenalis called giardipain-1, contributes to the pathogenesis of giardiasis induced by trophozoites of the WB strain. In an experimental system, we demonstrate that purified giardipain-1 induces apoptosis and extrusion of epithelial cells at the tips of the villi in infected jirds (Meriones unguiculatus). Moreover, jird infection with trophozoites expressing giardipain-1 resulted in intestinal epithelial damage, cellular infiltration, crypt hyperplasia, goblet cell hypertrophy and oedema. Pathological alterations were more pronounced when jirds were infected intragastrically with Giardia trophozoites that stably overexpress giardipain-1. Furthermore, Giardia colonization in jirds results in a chronic inflammation that could relate to the dysbiosis triggered by the protist. Taken together, these results reveal that giardipain-1 plays a key role in the pathogenesis of giardiasis.
Asunto(s)
Proteasas de Cisteína , Giardia lamblia , Giardiasis , Animales , Proteasas de Cisteína/genética , Gerbillinae , Giardia , Trofozoítos , Mucosa Intestinal/patología , Homeostasis , InflamaciónRESUMEN
Giardia duodenalis, is a binuclear and microaerophilic protozoan that causes giardiasis. Up to date, several molecular approaches have been taken to understand the molecular mechanisms of diverse cellular processes in this parasitic protozoan. However, the role of many genes involved in these processes needs further analysis. The CRISPR interference (CRISPRi) system has been widely used, as a constitutive expression system for gene silencing purposes in several parasites, including Giardia. The aim of this work was to implement a tunable t-CRISPRi system in Giardia to silence abundant, moderately and low expressed genes, by constructing an optimized and inducible plasmid for the expression of both gRNA and dCas9. A doxycycline inducible pRan promoter was used to express dCas9 and each gRNA, consistently dCas9 expression and nuclear localization were confirmed by Western-blot and immunofluorescence in transfected trophozoites. The transcriptional repression was performed on α-tubulin (high expression), giardipain-1 (moderate expression) and Sir2 and Sir4 (low expression) genes. The α-tubulin gene knock-down caused by dCas9 doxycycline-induction was confirmed by a decrease in its protein expression which was of 50% and 60% at 24 and 48 h, respectively. This induced morphological alterations in flagella. The giardipain-1 knock down, showed a decrease in protein expression of 40 and 50% at 12 and 24 h, respectively, without affecting trophozoites viability, consistent with this a zymogram analysis on giardipain-1 knock down revealed a decrease in giardipain-1 protease activity. When repressing sirtuins expression, a total repression was obtained but trophozoites viability was compromised. This approach provides a molecular tool for a tailored repression to produce specific gene knockdowns.