Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 44: 80-90, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928201

RESUMEN

Many organophosphorous esters synthesized for applications in industry, agriculture, or warfare irreversibly inhibit acetylcholinesterase, and acute poisoning with these compounds causes life-threatening cholinergic overstimulation. Following classical emergency treatment with atropine, an oxime, and a benzodiazepine, surviving victims often suffer brain neurodegeneration. Currently, there is no pharmacological treatment to prevent this brain injury. Here we show that a cyclic diterpenoid, (1S,2E,4R,6R,7E,11E)-cembra-2,7,11-triene-4,6-diol (4R) ameliorates the damage caused by diisopropylfluorophosphate (DFP) in the hippocampal area CA1. DFP has been frequently used as a surrogate for the warfare nerve agent sarin. In rats, DFP is lethal at the dose used to cause brain damage. Therefore, to observe brain damage in survivors, the death rate was reduced by pre-administration of the peripherally acting antidotes pyridostigmine and methyl atropine or its analog ipratropium. Pyridostigmine bromide, methyl atropine nitrate, and ipratropium bromide were dissolved in saline and injected intramuscularly at 0.1mg/kg, 20mg/kg, and 23mg/kg, respectively. DFP (9mg/kg) dissolved in cold water was injected intraperitoneally. 4R (6mg/kg) dissolved in DMSO was injected subcutaneously, either 1h before or 5 or 24h after DFP. Neurodegeneration was assessed with Fluoro-Jade B and amino cupric silver staining; neuroinflammation was measured by the expression of nestin, a marker of activated astrocytes. Forty-eight hours after DFP administration, 4R decreased the number of dead neurons by half when injected before or after DFP. 4R also significantly decreased the number of activated astrocytes. These data suggest that 4R is a promising new drug that could change the therapeutic paradigm for acute poisoning with organophosphorous compounds by the implementation of a second-stage intervention after the classical countermeasure treatment.


Asunto(s)
Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/prevención & control , Inhibidores de la Colinesterasa/envenenamiento , Diterpenos/uso terapéutico , Isoflurofato/envenenamiento , Fármacos Neuroprotectores/uso terapéutico , Acetilcolinesterasa/metabolismo , Animales , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Muerte Celular , Diterpenos/farmacología , Masculino , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente
2.
Int J Mol Sci ; 12(10): 7114-62, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22072939

RESUMEN

The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as ß-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.


Asunto(s)
Superóxido Dismutasa/metabolismo , Animales , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Inmunidad Innata , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Mitocondrias/metabolismo , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA