Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(38): 17561-17573, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39137340

RESUMEN

We report two new cyanido-bridged Fe(II)-Ag(I) coordination polymers using different acetylpyridine isomers, {Fe(4acpy)2[Ag(CN)2]2} 1 and {Fe(3acpy)[Ag(CN)2]2} 2 (4acpy = 4-acetylpyridine; 3acpy = 3-acetylpyridine) displaying thermally and photoinduced spin crossover (SCO). In both cases, the acetylpyridine ligand directs the coordination polymer structure and the SCO of the materials. Using 4-acetylpyridine, a two-dimensional (2D) structure is observed in 1 made of layers stacked on each other by silver-ketone interactions leading to a complete SCO and reversible thermally and photoswitching of the magnetic and optical properties. Changing the acetyl group to a 3-position, a completely different structure is obtained for 2. The unexpected coordination of the carbonyl group to the Fe(II) centers induces a three-dimensional (3D) structure, leading to statistical disorder around the Fe(II) with three different coordination spheres, [N6], [N4O2], and [N5O]. This disorder gives rise to an incomplete thermally induced SCO with a poor photoswitchability. These results demonstrate that the choice of the acetyl position on the pyridine dictates the structural characteristics of the compounds with a direct impact on the SCO behavior. Remarkably, this work opens interesting perspectives for the future design of Fe-Ag cyanido coordination polymers with judiciously substituted pyridine ligands to tune the thermally and photoinduced SCO properties.

2.
Pharmaceutics ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065553

RESUMEN

Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core-shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL-1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core-shell micromotors could hold great potential for combined photothermal therapy.

3.
Pharmaceutics ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36678639

RESUMEN

Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.

4.
ACS Omega ; 5(35): 22238-22247, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923781

RESUMEN

In this work, we report a new octanuclear cluster based on FeIII and the ligand 1H-imidazole-4,5-dicarboxylic acid, [Et3NH]12[Fe8(IDC)12]·10DMF·13H2O (1), with a metal core containing eight FeIII connected by only one type of organic ligand. A peak at 573 m/z in the mass spectra of the compound suggests the adduct species {[Fe8(IDC)12]+8H}4-. By X-ray photoelectron spectroscopy, the oxidation state of the iron cation was confirmed to be 3+, also identifying the presence of a quaternary nitrogen species, which act as a countercation of the anionic metal core [Fe8(IDC)12]12-. Mössbauer spectra recorded at different temperatures show an isomer shift and quadrupole splitting parameters that confirm the existence of only FeIII-HS in the structure of 1. X-ray analysis reveals that compound 1 crystallizes in the orthorhombic system space group Ibam, confirming a molecular cluster structure with an almost regular cube as geometry, with the FeIII atoms located at the corners of the cube and connected by µ-1κ2 N,O:2κ2 N',O‴-IDC3- bridges. Additionally, the magnetic measurements reveal a weak antiferromagnetic coupling in the Fe8 III coordination cluster (J = -3.8 cm-1). To the best of our knowledge, 1 is the first member of the family of cubes assembled with 1H-imidazole-4,5-dicarboxylic acid and FeIII cation, exhibiting high pH stability over a broad pH range, making it an ideal candidate for the design of supramolecular structures and metal-organic frameworks.

5.
Chem Commun (Camb) ; 55(99): 14992-14995, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777875

RESUMEN

The first family of hybrid mononuclear organic-inorganic lanthanoid complexes is reported, based on [PW11O39]7- and 1,10-phenanthroline ligands. This hybrid approach causes a dramatic improvement of the relaxation time (×1000) with a decrease of the optimal field while maintaining the Ueff of the inorganic analogues.

6.
Molecules ; 24(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583556

RESUMEN

Two new aromatic organo-imido polyoxometalates with an electron donor triazole group ([n-Bu4N]2[Mo6O18NC6H4N3C2H2]) (1) and a highly conjugated fluorene ([n-Bu4N]2[Mo6O18NC13H9]) (2) have been obtained. The electrochemical and spectroscopic properties of several organo-imido systems were studied. These properties were analysed by the theoretical study of the redox potentials and by means of the excitation analysis, in order to understand the effect on the substitution of the organo-imido fragment and the effect of the interaction to a metal centre. Our results show a bathochromic shift related to the charge transfer processes induced by the increase of the conjugated character of the organic fragment. The cathodic shift obtained from the electrochemical studies reflects that the electronic communication and conjugation between the organic and inorganic fragments is the main reason of this phenomenon.


Asunto(s)
Estructura Molecular , Electricidad Estática , Compuestos de Tungsteno/química , Técnicas de Química Sintética , Electroquímica , Modelos Moleculares , Conformación Molecular , Compuestos de Tungsteno/síntesis química
7.
Chem Commun (Camb) ; 54(54): 7531-7534, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29926015

RESUMEN

Here we report the first examples of 3d-4f compounds based on LnII cations. We have obtained a series of Ni2[LnCl6] isostructural compounds where LnII = Ce 1, Eu 2 and Gd 3 which were characterized in a cubic crystalline system with a Fm3[combining macron]m space group. Magnetic and optical characterization was also performed on this new class of compounds.

8.
ACS Omega ; 3(1): 801-807, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457930

RESUMEN

We report the synthesis and structural diversity of Zn(II) metal-organic framework (MOF) with in situ formation of tetrazole ligand 3-ptz [3-ptz = 5-(3-pyridyl)tetrazolate] as a function pH. By varying the initial reaction pH, we obtain high-quality crystals of the noncentrosymmetric three-dimensional MOF Zn(3-ptz)2 , mixed phases involving the zinc-aqua complex [Zn(H2O)4(3-ptz)2]·4H2O, and two-dimensional MOF crystals Zn(OH)(3-ptz) with a tunable microrod morphology, keeping reaction time, temperature, and metal-ligand molar ratio constant. Structures are characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis spectroscopy. We discuss the observed structural diversity in terms of the relative abundance of hydroxo-zinc species in solution for different values of pH.

9.
Dalton Trans ; 46(26): 8611-8620, 2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28644503

RESUMEN

The spectroscopic, electrochemical and photophysical properties of the first ReI organometallic organoimido-polyoxometalate complex [n-Bu4N][Mo6O18NC6H4-CH2-N3C2H2-Re-phen(CO)3] compared with all fragments are reported. The UV-Vis spectra are analysed using experimental and theoretical tools. In contrast to the reported studies in the literature, our results show that a new more intense band is present in the spectra of the hybrid ligand obscuring the intra-polyanion charge transfer. The electrochemical results show that the strong acceptor character of the polyoxometalate fragment is quenched by the condensation of the phenyl-triazole molecule.

10.
Inorg Chem ; 55(13): 6405-13, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27299178

RESUMEN

Single-molecule magnet (SMM) properties of transition-metal complexes coordinated to lacunary polyoxometalates (POM) are studied by means of state of the art ab initio methodology. Three [M(γ-SiW10O36)2] (M = Mn(III), Fe(III), Co(II)) complexes synthesized by Sato et al. (Chem. Commun. 2015, 51, 4081-4084) are analyzed in detail. SMM properties for the Co(II) and Mn(III) systems can be rationalized due to the presence of low-energy excitations in the case of Co(II), which are much higher in energy in the case of Mn(III). The magnetic behavior of both cases is consistent with simple d-orbital splitting considerations. The case of the Fe(III) complex is special, as it presents a sizable demagnetization barrier for a high-spin d(5) configuration, which should be magnetically isotropic. We conclude that a plausible explanation for this behavior is related to the presence of low-lying quartet and doublet states from the iron(III) center. This scenario is supported by ab initio ligand field analysis based on complete active space self-consistent field results, which picture a d-orbital splitting that resembles more a square-planar geometry than an octahedral one, stabilizing lower multiplicity states. This coordination environment is sustained by the rigidity of the POM ligand, which imposes a longer axial bond distance to the inner oxygen atom in comparison to the more external, equatorial donor atoms.

11.
Sci Rep ; 6: 23847, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033418

RESUMEN

The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin Fe(III) ferromagnetically coupled and 24 diamagnetic low-spin Fe(II) ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic Fe(II) cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic Fe(III) centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

12.
Dalton Trans ; 44(28): 12493-6, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26087017

RESUMEN

M'0.2Mn0.8PS3·0.25H2O materials are obtained by a mild microwave assisted reaction (M' = Co(II), Ni(II), Cu(II), Zn(II)), which permitted us to obtain the first copper(ii) bimetallic phase. All these materials have a lower energy gap and antiferromagnetic interactions with lower values of the Weiss constant, than that of the pristine phase MnPS3.

13.
Inorg Chem ; 54(8): 3805-14, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25831075

RESUMEN

We report the crystal face indexing and molecular spatial orientation, magnetic properties, electron paramagnetic resonance (EPR) spectra, and density functional theory (DFT) calculations of two previously reported oxovanadium phosphates functionalized with Cu(II) complexes, namely, [Cu(bipy)(VO2)(PO4)]n (1) and [{Cu(phen)}2(VO2(H2O)2)(H2PO4)2 (PO4)]n (2), where bipy = 2,2'-bipyridine and phen = 1,10-phenanthroline, obtained by a new synthetic route allowing the growth of single crystals appropriate for the EPR measurements. Compounds 1 and 2 crystallize in the triclinic group P1̅ and in the orthorhombic Pccn group, respectively, containing dinuclear copper units connected by two -O-P-O- bridges in 1 and by a single -O-P-O- bridge in 2, further connected through -O-P-O-V-O- bridges. We emphasize in our work the structural aspects related to the chemical paths that determine the magnetic properties. Magnetic susceptibility data indicate bulk antiferromagnetism for both compounds, allowing to calculate J = -43.0 cm(-1) (dCu-Cu = 5.07 Å; J defined as Hex(i,j) = -J Si·Sj), considering dinuclear units for 1, and J = -1.44 cm(-1) (dCu-Cu = 3.47 Å) using the molecular field approximation for 2. The single-crystal EPR study allows evaluation of the g matrices, which provide a better understanding of the electronic structure. The absence of structure of the EPR spectra arising from the dinuclear character of the compounds allows estimation of weak additional exchange couplings |J'| > 0.3 cm(-1) for 1 (dCu-Cu = 5.54 Å) and a smaller value of |J'| ≥ 0.15 cm(-1) for 2 (dCu-Cu = 6.59 Å). DFT calculations allow evaluating two different exchange couplings for each compound, specifically, J = -36.60 cm(-1) (dCu-Cu = 5.07 Å) and J' = 0.20 cm(-1) (dCu-Cu =5.54 Å) for 1 and J = -1.10 cm(-1) (dCu-Cu =3.47 Å) and J' = 0.01 cm(-1) (dCu-Cu = 6.59 Å) for 2, this last value being in the range of the uncertainties of the calculations. Thus, these values are in good agreement with those provided by magnetic and single-crystal EPR measurements.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Fosfatos/química , Teoría Cuántica , Vanadatos/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Fenómenos Magnéticos , Modelos Moleculares
14.
Dalton Trans ; 43(37): 14132-41, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25135620

RESUMEN

In the present work, the synthesis and structural characterization of four new polyoxovanadoborate (BVO) frameworks based on the [V12B18O60H6](10-) polyanion are reported: (NH4)8(1,3-diapH2)[V12B18O60H6]·5H2O (1), K8(NH4)2[V12B18O60H6]·18H2O (2), K10[V12B18O60H6]·10H2O (3) and K8Cs2[V12B18O60H6]·10H2O (4). A global antiferromagnetic behaviour is observed for these 10V(IV)/2V(V) mixed valence clusters. The magnetic data of 1, 2 and 3, which present different countercation environments, show that 1 is more coupled than 2 and 3. DFT calculations show that the positive charges strongly influence the polarization mechanism of the spin density of the vanadyl groups and the extent of the magnetic orbitals, therefore corroborating the experimental observation of the quenching effect of the magnetic coupling between vanadium centres of 2 and 3.

15.
Acta Crystallogr C ; 69(Pt 11): 1344-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24192186

RESUMEN

In the structure of the title compound, {[Cu2(C10H2O8)(H2O)6]·4H2O}n, the benzene-1,2,4,5-tetracarboxylate ligand, (btec)(4-), is located on a crystallographic inversion centre in a µ4-coordination mode. The coordination environment of each pentacoordinated Cu(II) centre is square pyramidal (SBP), formed by three water molecules and two carboxylate O atoms from two different (btec)(4-) ligands. The completely deprotonated (btec)(4-) ligand coordinates in a monodentate mode to four Cu(II) atoms. The alternation of (btec)(4-) ligands and SBP Cu(II) centres leads to the formation of a planar two-dimensional covalent network of parallelograms, parallel to the ab plane. Hydrogen bonds between a basal water molecule and an apical one from an adjacent [Cu(btec)0.5(H2O)3] unit exist in the intralayer space. Hydrogen bonds are also present between the two-dimensional network and the water molecules filling the channels in the structure.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Estructura Molecular
16.
Inorg Chem ; 52(15): 8369-77, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23883164

RESUMEN

An unusual and unique conformation of a paddle wheel type binuclear copper(II) complex containing acetate and acetamido ligands, {Cu2(µ2-O2CCH3)4}(OCNH2CH3) (1), was obtained by solvothermal synthesis. The structural characterization of this compound shows that the apical (acetamido) ligands are disposed at a 62° dihedral angle, generating a special conformation as a consequence of the synthetic method used. This conformation has not been reported in other paddle wheel copper(II) tetraacetate compounds. Electron paramagnetic resonance (EPR) spectra of powder samples of (1) were obtained at 9.5 and 33.8 GHz, while single crystal spectra were obtained at 33.8 GHz with a B0 applied in three orthogonal planes. The fit of the single crystal experimental data allowed gave g∥ = 2.345 ± 0.003, and g⊥ = 2.057 ± 0.005. The angular variation of the EPR line allows evaluation of the fine structure of (1), giving D = -0.337 ± 0.002 cm(-1) and E = -0.005 ± 0.001 cm(-1). The line width angular dependence, used together with the Anderson model and Kubo-Tomita theory, permitted the interdimer interaction to be evaluated as |J'| = (0.051 ± 0.002) cm(-1). Using the powder spectral temperature dependence it was possible to evaluate the intradinuclear exchange coupling constan J0 as -101 ± 2 cm(-1), which is considerably lower than that reported for other analogous copper(II) tetraacetate paddle wheel compounds (Cu(II)-PW), showing the remarkable effect of the conformation of the terminal ligands on the magnetic interaction.

17.
Acta Crystallogr C ; 69(Pt 5): 506-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23629902

RESUMEN

The title complex, [NaNi(C5H7O2)3]n, contains an anionic tris(acetylacetonato)nickelate(II) unit, [Ni(acac)3](-) (acac is acetylacetonate), with a highly regular octahedral coordination geometry. The Ni(II) cation lies on a Wyckoff a site, resulting in D3 symmetry of the anion. Charge balance is provided by sodium cations, which occupy Wyckoff type b sites. Each sodium cation is surrounded by two [Ni(acac)3](-) anions, each of which is connected to the alkali metal through three O atoms, in a fac configuration. This arrangement leads to the formation of linear [Na{Ni(acac)3}]n chains along the c axis. The Ni···Na distance is 2.9211 (10) Å. The title complex is one of the few examples of heterometallic systems based on alkali and transition metal cations bridged by acetylacetonate ligands.

18.
J Mol Model ; 19(7): 2835-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23224799

RESUMEN

A theoretical study of the magnetic properties, using density functional theory, of a family of trinuclear µ3-OH copper(II) complexes reported in the literature is presented. The reported X-ray crystal structures of [Cu3(µ3-OH)(aat)3(H2O)3](NO3)2 · H2O (HUKDUM), where aat: 3-acetylamine-1,2,4-triazole; [Cu3(µ3-OH)(aaat)3(H2SO4)(HSO4)(H2O)] (HUKDOG), where aaat: 3-acetylamine-5-amine-1,2,4-triazole; [Cu3(µ3-OH)(PhPyCNO)3(tchlphac)2] (HOHQUR), where PhPyCNO: phenyl 2-pyridyl-ketoxime and tchlphac: acid 2,4,5-trichlorophenoxyacetic; [Cu3(µ3-OH)(PhPyCNO)3(NO3)2(CH3OH)] (ILEGEM); [Cu3(µ3-OH)(pz)3(Hpz)3(ClO4)2] (QOPJIP), where Hpz = pyrazole; [Cu3(µ3-OH)(pz)3(Hpz)(Me3CCOO)2] ∙ 2Me3CCOOH (DEFSEN) and [Cu3(µ3-OH)(8-amino-4-methyl-5-azaoct-3-en-2-one)3][CuI3] (RITXUO), were used in the calculations. The magnetic exchange constants were calculated using the broken-symmetry approach. The calculated J values are for HUKDUM J1 = -68.6 cm(-1), J2 = -69.9 cm(-1), J3 = -70.4 cm(-1); for HUKDOG, J1 = -73.5 cm(-1), J2 = -58.9 cm(-1), J3 = -62.1 cm(-1); for HOHQUR J1 = -128.3 cm(-1), J2 = -134.1 cm(-1), J3 = -120.4 cm(-1); for ILEGEM J1 = -151.6 cm(-1), J2 = -173.9 cm(-1), J3 = -186.9 cm(-1); for QOPJIP J1 = -118.3 cm(-1), J2 = -106.0 cm(-1), J3 = -120.6 cm(-1); for DEFSEN J1 = -74.9 cm(-1), J2 = -64.0 cm(-1), J3 = -57.7 cm(-1) and for RITXUO J1 = -10.9 cm(-1), J2 = +14.3 cm(-1), J3 = -35.4 cm(-1). The Kahn-Briat model was used to correlate the calculated magnetic properties with the overlap of the magnetic orbitals. Spin density surfaces show that the delocalization mechanism is predominant in all the studied compounds.


Asunto(s)
Cobre/química , Estructura Molecular , Triazoles/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Magnetismo , Pirazoles/química
19.
Acta Crystallogr C ; 68(Pt 7): m200-2, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22763689

RESUMEN

The structure of the title compound, poly[(dihydrogenphosphato-κO)(µ(3)-hydrogenphosphato)di-µ-oxido-(1,10-phenanthroline)copper(II)vanadium(V)], [CuV(HPO(4))(H(2)PO(4))O(2)(C(12)H(8)N(2))](n), is defined by [(phen)Cu-µ-(κ(2)O:O'-VP(2)O(10)H(3))(2)-Cu(phen)] units (phen is 1,10-phenanthroline), which are connected to neighbouring units through vanadyl bridges. Neighbouring chains have no covalent bonds between them, although they interdigitate through the phen groups via π-π interactions.

20.
Inorg Chem ; 50(22): 11461-71, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22026723

RESUMEN

Structural, magnetic, and powder and single-crystal electron paramagnetic resonance (EPR) studies were performed on [{Cu(bipy)(en)}{Cu(bipy)(H(2)O)}{VO(3)}(4)](n) (bipy = 2,2'-bipyridine, en = ethylenediamine), which is a new copper-vanadium hybrid organic-inorganic compound containing Cu(II) and V(V) centers. The oxovanadium units provide an anionic scaffolding to the structure, where two types of Cu(II) coordination modes, octahedral (Cu1) and square pyramidal (Cu2), contribute to the magnetic properties. The crystal structure contains layers including Cu1 and Cu2 ions, separated by stacked arrangements of 2,2'-bipyridine molecules. Each type of Cu(II) ion in these layers forms parallel spin chains described by exchange coupling parameters J(1) and J(2) for Cu1 and Cu2, respectively (exchange couplings defined as H(ex)(i,j) = -J(ij)S(i)S(j)), which, for necessity, are assumed to be equal to J. These chains are coupled by much weaker Cu1-Cu2 exchange interactions J(3) connecting neighbor Cu1 and Cu2 ions within a layer, through paths acting as rungs of a ladder chain structure. The average coupling J, which is antiferromagnetic (J < 0), according to the susceptibility data, is estimated with similar results with a mean field approximation (J = -1.4 cm(-1)), and with a uniform chain model (J = -1.7 cm(-1)). The EPR spectra of powdered samples and oriented single crystals are shown to be independent of J(1) and J(2), but are dependent on the weak coupling J(3), and the data allow a lower limit to be established: |J(3)| > 0.04 cm(-1). The spectra are also strongly sensitive to extremely weak coupling interactions with average magnitude J(4) between copper atoms in neighboring layers, separated by ∼10 Å, using the stacked 2,2'-bipyridine molecules, which produce a 2D-to-3D quantum phase transition. This is observed in single-crystal samples when the energy levels are changed with the orientation of the magnetic field. From the characteristics of these transitions, we estimate a value of |J(4)| = 0.0034 ± 0.0004 cm(-1) between Cu(II) ions in neighboring layers. This work emphasizes the important possibilities of EPR to evaluate extremely small exchange couplings between metal ions in a solid material, even in the presence of other much larger couplings.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Óxidos/química , Compuestos de Vanadio/química , 2,2'-Dipiridil/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA