Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lett Appl Microbiol ; 63(2): 147-54, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27282128

RESUMEN

UNLABELLED: Spontaneous fermented sourdoughs prepared from amaranth flour were investigated for the presence of autochthonous lactic acid bacteria (LAB) predominating microbiota. The doughs were fermented with daily backslopping on a laboratory scale at 30°C for 10 days. LAB counts ranged from 2·60 to 8·54 log CFU g(-1) with a pH declined from 6·2 to 3·8 throughout fermentation. The combined use of randomly amplified polymorphic DNA (RAPD)-PCR analysis and sequence analysis of 16S rRNA was applied for LAB intraspecies differentiation and taxonomic identification, respectively. Enterococcus, Pediococcus and Lactobacillus species were present in amaranth sourdoughs (AS). After the first refreshment step, Lactobacillus plantarum dominated AS until the end of fermentation. In coincidence, when DGGE analysis was performed, the occurrence of a progressive change in bacterial communities allowed the selection of Lact. plantarum as a dominant species. Moreover, technological, functional and safety characteristics of representative RAPD-biotypes were investigated. Lact. plantarum CRL1898 was selected as a potential candidate for gluten-free amaranth sourdough starter. SIGNIFICANCE AND IMPACT OF THE STUDY: Nowadays, there is an increasing interest in ancient noncereal gluten-free (GF) crops such as amaranth, due to their reported nutritional and health benefits. However, the use of these grains is still limited to traditional foods and bread making processes that are not yet well standardized. Results on the dynamics of autochthonous lactic acid bacteria (LAB) microbiota during laboratory spontaneous amaranth sourdoughs (AS) fermentation will contribute to overcome challenges for GF-fermented products development. In addition, knowledge about LAB diversity involving Enterococcus, Pediococcus and Lactobacillus species, with Lactobacillus plantarum predominating during AS fermentation, and their technological and functional properties provides the basis for the selection of autochthonous strains as starters cultures for novel gluten-free bakery products with enhanced nutritional, sensory and/or safety quality.


Asunto(s)
Amaranthus/microbiología , Enterococcus/clasificación , Harina/microbiología , Lactobacillus plantarum/clasificación , Pediococcus/clasificación , Técnicas de Tipificación Bacteriana , Biodiversidad , Reactores Biológicos/clasificación , Reactores Biológicos/microbiología , Pan/microbiología , Dieta Sin Gluten , Enterococcus/aislamiento & purificación , Enterococcus/metabolismo , Fermentación , Microbiología de Alimentos , Ácido Láctico/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Lactobacillus plantarum/metabolismo , Microbiota/genética , Pediococcus/aislamiento & purificación , Pediococcus/metabolismo , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio
2.
J Appl Microbiol ; 120(5): 1289-301, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26909667

RESUMEN

AIMS: To analyse lactic acid bacteria (LAB) diversity and technological-functional and safety properties of strains present during spontaneous fermented quinoa sourdoughs. METHODS AND RESULTS: Fermentation was performed by daily backslopping at 30°C for 10 days. Autochthonous LAB microbiota was monitored by a biphasic approach combining random amplified polymorphic DNA (RAPD)-PCR and rRNA gene sequencing with PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Identification and intraspecies differentiation allowed to group isolates within nine LAB species belonging to four genera. A succession of LAB species occurred during 10-days backslopping; Lactobacillus plantarum and Lactobacillus brevis were detected as dominant species in the consortium. The characterization of 15 representative LAB strains was performed based on the acidifying capacity, starch and protein hydrolysis, γ-aminobutyric acid and exopolysaccharides production, antimicrobial activity and antibiotic resistance. CONCLUSION: Strains characterization led to the selection of Lact. plantarum CRL1905 and Leuconostoc mesenteroides CRL1907 as candidates to be assayed as functional starter culture for the gluten-free (GF) quinoa fermented products. SIGNIFICANCE AND IMPACT OF THE STUDY: Results on native LAB microbiota present during quinoa sourdough fermentation will allow the selection of strains with appropriate technological properties to be used as a novel functional starter culture for GF-fermented products.


Asunto(s)
Biodiversidad , Chenopodium quinoa/microbiología , Lactobacillaceae/clasificación , Pan/microbiología , Fermentación , Microbiología de Alimentos , Ácido Láctico/metabolismo , Lactobacillaceae/aislamiento & purificación , Lactobacillaceae/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...