Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1228344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795263

RESUMEN

Background and purpose: Previous experimental studies have shown that meningeal lymphatic vessels are located primarily along the walls of the dural sinus veins. Whether they are more widespread throughout human dura mater has presently not been characterized. The present study explored in humans whether meningeal lymphatic vessels may be identified remote from the sinus veins and whether they differ in the various location of dura mater. Methods: We included 15 patients who underwent neurosurgery, in whom dura mater was removed as part of the planned procedure. Tissue was prepared for immunohistochemistry using the lymphatic endothelial cell markers lymphatic vessel endothelial hyaluronan receptor 1 protein (LYVE-1), podoplanin and vascular endothelial growth factor receptor 3 (VEGFR3). Results: Lymphatic endothelial cell positive cells were found in dura mater at the posterior fossa (n = 8), temporal skull base (n = 5), frontal convexity (n = 1), and cranio-cervical junction (n = 1). They were most commonly seen remote from blood vessels, but also occurred along blood vessels, and seemed to be most abundant at the skull base. Conclusion: The present observations show that human lymphatic vessels are widespread in dura mater, not solely lining the dural sinuses.

2.
Fluids Barriers CNS ; 20(1): 23, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978127

RESUMEN

BACKGROUND: Despite greatly renewed interest concerning meningeal lymphatic function over recent years, the lymphatic structures of human dura mater have been less characterized. The available information derives exclusively from autopsy specimens. This study addressed methodological aspects of immunohistochemistry for visualization and characterization of lymphatic vessels in the dura of patients. METHODS: Dura biopsies were obtained from the right frontal region of the patients with idiopathic normal pressure hydrocephalus (iNPH) who underwent shunt surgery as part of treatment. The dura specimens were prepared using three different methods: Paraformaldehyde (PFA) 4% (Method #1), paraformaldehyde (PFA) 0.5% (Method #2), and freeze-fixation (Method #3). They were further examined with immunohistochemistry using the lymphatic cell marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and as validation marker we used podoplanin (PDPN). RESULTS: The study included 30 iNPH patients who underwent shunt surgery. The dura specimens were obtained average 16.1 ± 4.5 mm lateral to the superior sagittal sinus in the right frontal region (about 12 cm posterior to glabella). While lymphatic structures were seen in 0/7 patients using Method #1, it was found in 4/6 subjects (67%) with Method #2, while in 16/17 subjects (94%) using Method #3. To this end, we characterized three types of meningeal lymphatic vessels: (1) Lymphatic vessels in intimate contact with blood vessels. (2) Lymphatic vessels without nearby blood vessels. (3) Clusters of LYVE-1-expressing cells interspersed with blood vessels. In general, highest density of lymphatic vessels were observed towards the arachnoid membrane rather than towards the skull. CONCLUSIONS: The visualization of meningeal lymphatic vessels in humans seems to be highly sensitive to the tissue processing method. Our observations disclosed most abundant lymphatic vessels towards the arachnoid membrane, and were seen either in close association with blood vessels or remote from blood vessels.


Asunto(s)
Vasos Linfáticos , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Duramadre/patología , Meninges , Inmunohistoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA