Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 199, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128994

RESUMEN

Infection during the perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) transforms brain lipid composition in the offspring and protects the neonatal brain from stroke, in part by blunting injurious immune responses. Critical to the interface between the brain and systemic circulation is the vasculature, endothelial cells in particular, that support brain homeostasis and provide a barrier to systemic infection. Here, we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in postnatal day 9 mice after modeling aspects of infection using LPS. Transcriptome analysis was performed on microvessels isolated from brains of pups from dams maintained on 3 different maternal diets from gestation day 1: standard, n-3 enriched or n-6 enriched diets. Depending on the diet, in endothelial cells LPS produced distinct regulation of pathways related to immune response, cell cycle, extracellular matrix, and angiogenesis. N-3 PUFA diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. Cytokine analysis revealed a blunted LPS response in blood and brain of offspring from dams on n-3 enriched diet. Analysis of cerebral vasculature in offspring in vivo revealed no differences in vessel density. However, vessel complexity was decreased in response to LPS at 72 h in standard and n-6 diets. Thus, LPS modulates specific transcriptomic changes in brain vessels of offspring rather than major structural vessel characteristics during early life. N-3 PUFA-enriched maternal diet in part prevents an imbalance in homeostatic processes, alters inflammation and ultimately mitigates changes to the complexity of surface vessel networks that result from infection. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.


Asunto(s)
Animales Recién Nacidos , Ácidos Grasos Omega-3 , Transcriptoma , Animales , Ratones , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Embarazo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Inflamación/metabolismo , Inflamación/patología , Encéfalo/metabolismo , Encéfalo/patología , Endotoxinas/toxicidad
2.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328227

RESUMEN

Infection during perinatal period can adversely affect brain development, predispose infants to ischemic stroke and have lifelong consequences. We previously demonstrated that diet enriched in n-3 polyunsaturated fatty acids (PUFA) transforms brain lipid composition and protects from neonatal stroke. Vasculature is a critical interface between blood and brain providing a barrier to systemic infection. Here we examined whether maternal PUFA-enriched diets exert reprograming of endothelial cell signalling in 9-day old mice after endotoxin (LPS)-induced infection. Transcriptome analysis was performed on brain microvessels from pups born to dams maintained on 3 diets: standard, n-3 or n-6 enriched. N-3 diet enabled higher immune reactivity in brain vasculature, while preventing imbalance of cell cycle regulation and extracellular matrix cascades that accompanied inflammatory response in standard diet. LPS response in blood and brain was blunted in n-3 offspring. Cerebral angioarchitecture analysis revealed modified vessel complexity after LPS. Thus, n-3-enriched maternal diet partially prevents imbalance in homeostatic processes and alters inflammation rather than affects brain vascularization during early life. Importantly, maternal diet may presage offspring neurovascular outcomes later in life.

3.
Stroke ; 55(2): 506-518, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38252757

RESUMEN

Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular Isquémico , Niño , Adulto , Recién Nacido , Embarazo , Humanos , Femenino , Masculino , Arterias , Sistema Nervioso Central , Mediadores de Inflamación
4.
Transl Stroke Res ; 15(1): 69-86, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-36705821

RESUMEN

Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular , Recién Nacido , Humanos , Niño , Accidente Cerebrovascular/terapia , Encéfalo/metabolismo , Neuroprotección
5.
iScience ; 26(4): 106340, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37009213

RESUMEN

Arterial ischemic stroke is common in neonates-1 per 2,300-5,000 births-and therapeutic targets remain insufficiently defined. Sphingosine-1-phosphate receptor 2 (S1PR2), a major regulator of the CNS and immune systems, is injurious in adult stroke. Here, we assessed whether S1PR2 contributes to stroke induced by 3 h transient middle cerebral artery occlusion (tMCAO) in S1PR2 heterozygous (HET), knockout (KO), and wild type (WT) postnatal day 9 pups. HET and WT of both sexes displayed functional deficits in Open Field test whereas injured KO at 24 h reperfusion performed similarly to naives. S1PR2 deficiency protected neurons, attenuated infiltration of inflammatory monocytes, and altered vessel-microglia interactions without reducing increased cytokine levels in injured regions at 72 h. Pharmacologic inhibition of S1PR2 after tMCAO by JTE-013 attenuated injury 72 h after tMCAO. Importantly, the lack of S1PR2 alleviated anxiety and brain atrophy during chronic injury. Altogether, we identify S1PR2 as a potential new target for mitigating neonatal stroke.

6.
Sci Rep ; 13(1): 2304, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759676

RESUMEN

Innate immune response in neonatal brain is associated with a robust microglial activation and induction of Toll-like Receptors (TLRs). To date, the role of the scavenger receptor CD36 in TLRs modulation, particularly TLR2 signaling, has been well established in adult brain. However, the crosstalk between TLR4, TLR2 and CD36 and its immunogenic influence in the neonatal brain remains unclear. In this study, using a CD36 blocking antibody (anti-CD36) at post-natal day 8, we evaluated the response of neonates to systemic endotoxin (lipopolysaccharide; LPS) challenge. We visualized the TLR2 response by bioluminescence imaging using the transgenic mouse model bearing the dual reporter system luciferase/green fluorescent protein under transcriptional control of a murine TLR2 promoter. The anti-CD36 treatment modified the LPS induced inflammatory profile in neonatal brains, causing a significant decrease in inflammatory cytokine levels and the TLR2 and TLR3 mediated signalling.The interferon regulatory factor 3 (IRF3) pathway remained unaffected. Treatment of the LPS-challenged human immature microglia with anti-CD36 induced a marked decrease in TLR2/TLR3 expression levels while TLR4 and IRF3 expression was not affected, suggesting the shared CD36 regulatory mechanisms in human and mouse microglia. Collectively, our results indicate that blocking CD36 alters LPS-induced inflammatory profile of mouse and human microglia, suggesting its role in fine-tuning of neuroinflammation.


Asunto(s)
Microglía , Receptor Toll-Like 2 , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Encéfalo/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Lipopolisacáridos , Ratones Transgénicos , Microglía/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptores Toll-Like/metabolismo
7.
Semin Pediatr Neurol ; 44: 100995, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456035

RESUMEN

Infections play an important role in the pathogenesis of acute ischemic stroke (AIS) in neonates and children. In neonates, chorioamnionitis or intrauterine inflammation has been implicated as a common risk factor for AIS. In infants and children, recent investigations demonstrated that even minor childhood infections are associated with subsequent increased risk for AIS. Post-infectious inflammatory mechanisms following infections with herpesviruses may lead to focal cerebral arteriopathy (FCA), one of the most common causes of AIS in a previously healthy child. Other agents such as parvovirus B19, dengue virus, and SARS-CoV-2 have recently been implicated as other potential triggers. Infections are compelling treatable stroke risk factors, with available therapies for both pathogens and downstream inflammatory effects. However, infections are common in childhood, while stroke is uncommon. The ongoing VIPS II (Vascular effects of Infection in Pediatric Stroke) study aims to identify the array of pathogens that may lead to childhood AIS and whether either unusual strains or unusual combinations of pathogens explain this paradox. Immune modulation with corticosteroids for FCA is another active area of research, with European and U.S. trials launching soon. The results of these new pediatric stroke studies combined with findings emerging from the larger field of immune-mediated post-infectious diseases will likely lead to new approaches to the prevention and treatment of pediatric stroke. This review highlights recent developments from both clinical and animal model research enhancing our understanding of this relationship between infection, inflammation, and stroke in neonates and children.


Asunto(s)
COVID-19 , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Animales , Femenino , Embarazo , COVID-19/complicaciones , SARS-CoV-2 , Accidente Cerebrovascular/complicaciones , Inflamación/complicaciones
8.
J Neuroinflammation ; 19(1): 47, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148760

RESUMEN

BACKGROUND: Ischemic stroke induces the activation and recruitment of peripheral leukocytes to the injured brain. These cells can infiltrate the brain through multiple routes, either by penetrating blood-brain barrier or via blood-CSF barriers at the meninges or the choroid plexus (CP). We previously showed that myeloid cell trafficking via the CP occurs early after neonatal arterial stroke and modulates injury. CD36 is a receptor that mediates function of endothelial cells and cells of the monocyte lineage under various neurodegenerative conditions and can influence brain injury after neonatal stroke. Here we asked whether CD36 impacts injury by altering leukocyte trafficking through the CP in neonatal mice subjected to transient middle cerebral artery occlusion (tMCAO). METHODS: In neonatal mice with intact or globally disrupted CD36 signalling (CD36 KO), we characterized the phenotypes of myeloid cells by flow cytometry and the underlying gene expression signatures in the CPs contralateral and ipsilateral to tMCAO by RNA sequencing analyses, focussing on early post-reperfusion time window. RESULTS: Flow cytometry in the isolated CPs revealed that CD36 mediates stepwise recruitment of myeloid cells to the CP ipsilateral to tMCAO early after reperfusion, with a predominant increase first in inflammatory monocyte subsets and neutrophils followed by patrolling monocytes. RNA sequencing analyses demonstrated marked changes in gene expression in the CP ipsilateral compared to the CP contralateral to tMCAO in wild type mice. Changes were further modified by lack of CD36, including distinction in several clusters of genes involved in inflammatory, metabolic and extracellular matrix signalling in the CP ipsilateral to tMCAO. CONCLUSION: Altogether, our data suggest cooperation between blood-CSF-brain interface via the CP through CD36-mediated signalling following neonatal stroke with a key role for inflammatory monocytes and neutrophils.


Asunto(s)
Células Endoteliales , Accidente Cerebrovascular , Animales , Animales Recién Nacidos , Antígenos CD36/genética , Células Endoteliales/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Accidente Cerebrovascular/metabolismo
9.
Transl Stroke Res ; 13(3): 449-461, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34674145

RESUMEN

The fetus is strongly dependent on nutrients from the mother, including polyunsaturated fatty acids (PUFA). In adult animals, n-3 PUFA ameliorates stroke-mediated brain injury, but the modulatory effects of different PUFA content in maternal diet on focal arterial stroke in neonates are unknown. This study explored effects of maternal n-3 or n-6 enriched PUFA diets on neonatal stroke outcomes. Pregnant mice were assigned three isocaloric diets until offspring reached postnatal day (P) 10-13: standard, long-chain n-3 PUFA (n-3) or n-6 PUFA (n-6) enriched. Fatty acid profiles in plasma and brain of mothers and pups were determined by gas chromatography-mass spectrometry and cytokines/chemokines by multiplex protein analysis. Transient middle cerebral artery occlusion (tMCAO) was induced in P9-10 pups and cytokine and chemokine accumulation, caspase-3 and calpain-dependent spectrin cleavage and brain infarct volume were analyzed. The n-3 diet uniquely altered brain lipid profile in naïve pups. In contrast, cytokine and chemokine levels did not differ between n-3 and n-6 diet in naïve pups. tMCAO triggered accumulation of inflammatory cytokines and caspase-3-dependent and -independent cell death in ischemic-reperfused regions in pups regardless of diet, but magnitude of neuroinflammation and caspase-3 activation were attenuated in pups on n-3 diet, leading to protection against neonatal stroke. In conclusion, maternal/postnatal n-3 enriched diet markedly rearranges neonatal brain lipid composition and modulates the response to ischemia. While standard diet is sufficient to maintain low levels of inflammatory cytokines and chemokines under physiological conditions, n-3 PUFA enriched diet, but not standard diet, attenuates increases of inflammatory cytokines and chemokines in ischemic-reperfused regions and protects from neonatal stroke.


Asunto(s)
Ácidos Grasos Omega-3 , Accidente Cerebrovascular , Animales , Encéfalo/metabolismo , Caspasa 3/metabolismo , Quimiocinas , Citocinas/metabolismo , Dieta , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados/metabolismo , Femenino , Ratones , Embarazo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & control
10.
Neurotherapeutics ; 18(3): 1939-1952, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34235636

RESUMEN

Mesenchymal stem cell (MSC)-based therapies are beneficial in models of perinatal stroke and hypoxia-ischemia. Mounting evidence suggests that in adult injury models, including stroke, MSC-derived small extracellular vesicles (MSC-sEV) contribute to the neuroprotective and regenerative effects of MSCs. Herein, we examined if MSC-sEV protect neonatal brain from stroke and if this effect is mediated via communication with microglia. MSC-sEV derived from bone marrow MSCs were characterized by size distribution (NanoSight™) and identity (protein markers). Studies in microglial cells isolated from the injured or contralateral cortex of postnatal day 9 (P9) mice subjected to a 3-h middle cerebral artery occlusion (tMCAO) and cultured (in vitro) revealed that uptake of fluorescently labeled MSC-sEV was significantly greater by microglia from the injured cortex vs. contralateral cortex. The cell-type-specific spatiotemporal distribution of MSC-sEV was also determined in vivo after tMCAO at P9. MSC-sEV administered at reperfusion, either by intracerebroventricular (ICV) or by intranasal (IN) routes, accumulated in the hemisphere ipsilateral to the occlusion, with differing spatial distribution 2 h, 18 h, and 72 h regardless of the administration route. By 72 h, MSC-sEV in the IN group was predominantly observed in Iba1+ cells with retracted processes and in GLUT1+ blood vessels in ischemic-reperfused regions. MSC-sEV presence in Iba1+ cells was sustained. MSC-sEV administration also significantly reduced injury volume 72 h after tMCAO in part via modulatory effects on microglial cells. Together, these data establish feasibility for MSC-sEV delivery to injured neonatal brain via a clinically relevant IN route, which affords protection during sub-acute injury phase.


Asunto(s)
Vesículas Extracelulares/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Neuroprotección/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Vesículas Extracelulares/trasplante , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/prevención & control
11.
J Cereb Blood Flow Metab ; 41(12): 3171-3186, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34293939

RESUMEN

Stroke is among the top ten causes of death in children but has received disproportionally little attention. Cerebral arteriopathies account for up to 80% of childhood arterial ischemic stroke (CAIS) cases and are strongly predictive of CAIS recurrence and poorer outcomes. The underlying mechanisms of sensitization of neurovasculature by viral infection are undefined. In the first age-appropriate model for childhood arteriopathy-by administration of viral mimetic TLR3-agonist Polyinosinic:polycytidylic acid (Poly-IC) in juvenile mice-we identified a key role of the TLR3-neutrophil axis in disrupting the structural-functional integrity of the blood-brain barrier (BBB) and distorting the developing neurovascular architecture and vascular networks. First, using an array of in-vivo/post-vivo vascular imaging, genetic, enzymatic and pharmacological approaches, we report marked Poly-IC-mediated extravascular leakage of albumin (66kDa) and of a small molecule DiI (∼934Da) and disrupted tight junctions. Poly-IC also enhanced the neuroinflammatory milieu, promoted neutrophil recruitment, profoundly upregulated neutrophil elastase (NE), and induced neutrophil extracellular trap formation (NETosis). Finally, we show that functional BBB disturbances, NETosis and neuroinflammation are markedly attenuated by pharmacological inhibition of NE (Sivelestat). Altogether, these data reveal NE/NETosis as a novel therapeutic target for viral-induced cerebral arteriopathies in children.


Asunto(s)
Arterias Cerebrales/metabolismo , Trampas Extracelulares/metabolismo , Elastasa de Leucocito , Poli I-C/efectos adversos , Transducción de Señal/efectos de los fármacos , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Arterias Cerebrales/patología , Niño , Trampas Extracelulares/genética , Humanos , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Ratones , Ratones Transgénicos , Poli I-C/farmacología , Transducción de Señal/genética , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo
12.
Neurobiol Dis ; 157: 105431, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153465

RESUMEN

Microglial cells support brain homeostasis under physiological conditions and modulate brain injury in a context-dependent and brain maturation-dependent manner. Microglial cells protect neonatal brain from acute stroke. While microglial signaling via direct cell-cell interaction and release of variety of molecules is intensely studied, less is known about microglial signaling via release and uptake of extracellular vesicles (EVs). We asked whether neonatal stroke alters release of microglial EVs (MEV) and MEV communication with activated microglia. We pulled down and plated microglia from ischemic-reperfused and contralateral cortex 24 h after transient middle cerebral artery occlusion (tMCAO) in postnatal day 9 mice, isolated and characterized microglia-derived microvesicles (P3-MEV) and exosomes (P4-MEV), and determined uptake of fluorescently labeled P3-MEV and P4-MEV by plated microglia derived from ischemic-reperfused and contralateral cortex. We then examined how reducing EVs release in neonatal brain-by intra-cortical injection of CRISPR-Cas9-Smpd3/KO (Smpd3/KD) to downregulate Smpd3 gene to disrupt neutral sphingomyelinase-2 (N-SMase2)-impacts P3-MEV and P4-MEV release and stroke injury. Both size and protein composition differed between P3-MEV and P4-MEV. tMCAO further altered protein composition of P3-MEV and P4-MEV and significantly, up to 5-fold, increased uptake of both vesicle subtypes by microglia from ischemic-reperfused regions. Under physiological conditions neurons were the predominant cell type expressing N-SMase-2, an enzyme involved in lipid signaling and EVs release. After tMCAO N-SMase-2 expression was diminished in injured neurons but increased in activated microglia/macrophages, leading to overall reduced N-SMase-2 activity. Compared to intracerebral injection of control plasmid, CRISPR-Cas9-Smpd3/Ct, Smpd3/KD injection further reduced N-SMase-2 activity and significantly reduced injury. Smpd3 downregulation decreased MEV release from injured regions, reduced Smpd3/KD-P3-MEV uptake and abolished Smpd3/KD-P4-MEV uptake by microglia from ischemic-reperfused region. Cumulatively, these data demonstrate that microglial cells release both microvesicles and exosomes in naïve neonatal brain, that the state of microglial activation determines both properties of released EVs and their recognition/uptake by microglia in ischemic-reperfused and control regions, suggesting a modulatory role of MEV in neonatal stroke, and that sphingosine/N-SMase-2 signaling contributes both to EVs release and uptake (predominantly P4-MEV) after neonatal stroke.


Asunto(s)
Encéfalo/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Microglía/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Activación de Macrófagos , Ratones , Transducción de Señal , Esfingomielina Fosfodiesterasa/genética , Accidente Cerebrovascular/metabolismo
13.
Acta Physiol (Oxf) ; 233(1): e13674, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991400

RESUMEN

Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.


Asunto(s)
Hipoxia-Isquemia Encefálica , Accidente Cerebrovascular , Encéfalo , Niño , Femenino , Humanos , Inflamación , Microglía , Embarazo
14.
J Neurosci ; 40(19): 3849-3861, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32269105

RESUMEN

Neonatal stroke is as frequent as stroke in the elderly, but many pathophysiological injury aspects are distinct in neonates, including immune signaling. While myeloid cells can traffic into the brain via multiple routes, the choroid plexus (CP) has been identified as a uniquely educated gate for immune cell traffic during health and disease. To understand the mechanisms of myeloid cell trafficking via the CP and their influence on neonatal stroke, we characterized the phenotypes of CP-infiltrating myeloid cells after transient middle cerebral artery occlusion (tMCAO) in neonatal mice of both sexes in relation to blood-brain barrier permeability, injury, microglial activation, and CX3CR1-CCR2 signaling, focusing on the dynamics early after reperfusion. We demonstrate rapid recruitment of multiple myeloid phenotypes in the CP ipsilateral to the injury, including inflammatory CD45+CD11b+Ly6chighCD86+, beneficial CD45+CD11b+Ly6clowCD206+, and CD45+CD11b+Ly6clowLy6ghigh cells, but only minor leukocyte infiltration into acutely ischemic-reperfused cortex and negligible vascular albumin leakage. We report that CX3CR1-CCR2-mediated myeloid cell recruitment contributes to stroke injury. Considering the complexity of inflammatory cascades triggered by stroke and a role for TLR2 in injury, we also used direct TLR2 stimulation as an independent injury model. TLR2 agonist rapidly recruited myeloid cells to the CP, increased leukocytosis in the CSF and blood, but infiltration into the cortex remained low over time. While the magnitude and the phenotypes of myeloid cells diverged between tMCAO and TLR2 stimulation, in both models, disruption of CX3CR1-CCR2 signaling attenuated both monocyte and neutrophil trafficking to the CP and cortex.SIGNIFICANCE STATEMENT Stroke during the neonatal period leads to long-term disabilities. The mechanisms of ischemic injury and inflammatory response differ greatly between the immature and adult brain. We examined leukocyte trafficking via the choroid plexus (CP) following neonatal stroke in relation to blood-brain barrier integrity, injury, microglial activation, and signaling via CX3CR1 and CCR2 receptors, or following direct TLR2 stimulation. Ischemia-reperfusion triggered marked unilateral CX3CR1-CCR2 dependent accumulation of diverse leukocyte subpopulations in the CP without inducing extravascular albumin leakage or major leukocyte infiltration into the brain. Disrupted CX3CR1-CCR2 signaling was neuroprotective in part by attenuating monocyte and neutrophil trafficking. Understanding the migratory patterns of CP-infiltrating myeloid cells with intact and disrupted CX3CR1-CCR2 signaling could identify novel therapeutic targets to protect the neonatal brain.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Plexo Coroideo/metabolismo , Células Mieloides/metabolismo , Accidente Cerebrovascular/fisiopatología , Animales , Animales Recién Nacidos , Receptor 1 de Quimiocinas CX3C/metabolismo , Plexo Coroideo/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/inmunología , Receptores CCR2/metabolismo , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/metabolismo , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/metabolismo
15.
Int J Mol Sci ; 20(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071949

RESUMEN

Individuals born preterm have higher rates of neurodevelopmental disorders such as schizophrenia, autistic spectrum, and attention deficit/hyperactivity disorders. These conditions are often sexually dimorphic and with different developmental trajectories. The etiology is likely multifactorial, however, infections both during pregnancy and in childhood have emerged as important risk factors. The association between sex- and age-dependent vulnerability to neuropsychiatric disorders has been suggested to relate to immune activation in the brain, including complex interactions between sex hormones, brain transcriptome, activation of glia cells, and cytokine production. Here, we will review sex-dependent effects on brain development, including glia cells, both under normal physiological conditions and following perinatal inflammation. Emphasis will be given to sex-dependent effects on brain regions which play a role in neuropsychiatric disorders and inflammatory reactions that may underlie early-life programming of neurobehavioral disturbances later in life.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Inflamación/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Neuroglía/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Humanos , Inflamación/diagnóstico por imagen , Nacimiento Prematuro/fisiopatología , Esquizofrenia/fisiopatología , Caracteres Sexuales
16.
J Cereb Blood Flow Metab ; 39(10): 1919-1935, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628839

RESUMEN

Stroke is among the top 10 causes of death in children. The developmental stage of the brain is central to stroke pathophysiology. The incidence of childhood arterial ischemic stroke (CAIS) is lower than of perinatal arterial ischemic stroke but the rate of recurrence is strikingly high. Vascular inflammation is seen as major contributor to CAIS but the mechanisms that govern structural-functional basis of vascular abnormalities remain poorly understood. To identify the contribution of immune-neurovascular interactions to CAIS, we established stroke model in postnatal day 21 (P21) mice. We demonstrate acute functional deficits and histological injury and chronic MRI-identifiable injury, brain atrophy and marked derangements in the vascular network. In contrast to negligible albumin leakage and neutrophil infiltration following acute perinatal stroke, CAIS leads to significantly increased albumin leakage and neutrophil infiltration in injured regions of wild type mice and mice with functional CX3CR1-CCR2 receptors. In mice with dysfunctional CX3CR1-CCR2 signaling, extravascular albumin leakage is significantly attenuated, infiltration of injurious Ccr2+-monocytes essentially aborted, accumulation of Ly6G+ neutrophils reduced and acute injury attenuated. Unique identifiers of microglia and monocytes revealed phenotypic changes in each cell subtype of the monocyte lineage after CAIS. Taken together, CX3CR1-CCR2-dependent microglia-monocyte signaling contributes to cerebrovascular leakage, inflammation and CAIS injury.


Asunto(s)
Encéfalo/irrigación sanguínea , Receptor 1 de Quimiocinas CX3C/inmunología , Microglía/patología , Monocitos/patología , Receptores CCR2/inmunología , Accidente Cerebrovascular/patología , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Encéfalo/inmunología , Encéfalo/patología , Permeabilidad Capilar , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Monocitos/inmunología , Transducción de Señal , Accidente Cerebrovascular/inmunología
17.
Neuroscience ; 405: 68-76, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29352997

RESUMEN

Microglial cells are now recognized as the "gate-keepers" of healthy brain microenvironment with their disrupted functions adversely affecting neurovascular integrity, neuronal homeostasis, and network connectivity. The perception that these cells are purely toxic under neurodegenerative conditions has been challenged by a continuously increasing understanding of their complexity, the existence of a broad array of microglial phenotypes, and their ability to rapidly change in a context-dependent manner to attenuate or exacerbate injuries of different nature. Recent studies have demonstrated that microglial cells exert crucial physiological functions during embryonic and postnatal brain development, some of these functions being unique to particular stages of development, and extending far beyond sensing dangerous signals and serving as antigen presenting cells. In this focused review we cover the roles of microglial cells in regulating embryonic vasculogenesis, neurogenesis, and establishing network connectivity during postnatal brain development. We further discuss context-dependent microglial contribution to neonatal brain injuries associated with prenatal and postnatal infection and inflammation, in relation to neurodevelopmental disorders, as well as perinatal hypoxia-ischemia and arterial focal stroke. We also emphasize microglial phenotypic diversity, notably at the ultrastructural level, and their sex-dependent influence on the pathophysiology of neurodevelopmental disorders.


Asunto(s)
Lesiones Encefálicas/patología , Comunicación Celular/fisiología , Microglía/patología , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Humanos , Hipoxia Encefálica/patología , Recién Nacido , Inflamación/patología , Trastornos del Neurodesarrollo/patología , Accidente Cerebrovascular/patología
18.
Transl Stroke Res ; 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29766452

RESUMEN

We introduce a novel protocol to stain, visualize, and analyze blood vessels from the rat and mouse cerebrum. This technique utilizes the fluorescent dye, DiI, to label the lumen of the vasculature followed by perfusion fixation. Following brain extraction, the labeled vasculature is then imaged using wide-field fluorescence microscopy for axial and coronal images and can be followed by regional confocal microscopy. Axial and coronal images can be analyzed using classical angiographic methods for vessel density, length, and other features. We also have developed a novel fractal analysis to assess vascular complexity. Our protocol has been optimized for adult rat, adult mouse, and neonatal mouse studies. The protocol is efficient, can be rapidly completed, stains cerebral vessels with a bright fluorescence, and provides valuable quantitative data. This method has a broad range of applications, and we demonstrate its use to study the vasculature in assorted models of acquired brain injury.

19.
J Physiol ; 596(23): 5655-5664, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29528501

RESUMEN

Central nervous system homeostasis is maintained by cellular barriers that protect the brain from external environmental changes and protect the CNS from harmful molecules and pathogens in the blood. Historically, for many years these barriers were thought of as immature, with limited functions, during brain development. In this review, we will present advances in the understanding of the barrier systems during development and evidence to show that in fact the barriers serve many important neurodevelopmental functions and that fetal and newborn brains are well protected. We will also discuss how ischaemic injury or systemic inflammation may breach the integrity of the barriers in the developing brain.


Asunto(s)
Encéfalo/fisiología , Desarrollo Fetal , Animales , Transporte Biológico , Lesiones Encefálicas , Hipoxia Fetal , Feto , Humanos , Inflamación
20.
Cond Med ; 1(6): 279-293, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31214666

RESUMEN

Brain injury in the perinatal period occurs in many clinical settings, e.g. hypoxic-ischemic encephalopathy (HIE) in term infants, neonatal stroke, encephalopathy of prematurity, and infections. These insults often result in life-long disabilities including cerebral palsy, cognitive deficits, visual dysfunction, hearing impairments, and epilepsy. However, the success of clinical implementation of a broad array of potential neuroprotective strategies tested experimentally has been limited with the exception of therapeutic hypothermia (TH) used within hours of birth in term human babies with mild to moderate HIE. There is an extensive search for adjuvant therapeutic approaches to enhance the outcomes. One strategy is to modify susceptibility in the developing CNS by means of preconditioning or postconditioning using sublethal stress. The pre-clinical and clinical literature has shown that CNS immaturity at the time of ischemic insult plays a central role in the response to injury. Thus, better understanding of the molecular regulation of the endogenous vulnerability of the immature brain is needed. Further, the use of sublethal stressors of different origin may help shed light on mechanistic similarities and distinctions beween conditioning strategies. In this review we discuss the mechanisms of protection that are achieved by an interplay of changes on the systemic level and brain level, and via changes of intracellular and mitochondrial signaling. We also discuss the barriers to improving our understanding of how brain immaturity and the type of insult-hypoxic, ischemic or inflammatory-affect the efficacy of conditioning efforts in the immature brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA