Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378890

RESUMEN

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Asunto(s)
Caenorhabditis elegans , Proteínas Serina-Treonina Quinasas , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Mitosis , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo
2.
Oncogene ; 41(1): 1-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34686773

RESUMEN

PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Transducción de Señal/genética , Humanos
3.
Nat Commun ; 12(1): 3565, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117214

RESUMEN

Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Hidrolasas de Éster Carboxílico/genética , División Celular/fisiología , Ciclina B/metabolismo , Retroalimentación , Femenino , Meiosis , Mitosis , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas/genética , Fosforilación , Proteína Fosfatasa 2/genética , Xenopus , Proteínas de Xenopus , Xenopus laevis/metabolismo
4.
Biomolecules ; 10(11)2020 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266510

RESUMEN

Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.


Asunto(s)
Neoplasias/enzimología , Neoplasias/genética , Proteína Fosfatasa 2/farmacocinética , Animales , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
5.
J Cell Biol ; 218(2): 541-558, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30626720

RESUMEN

Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19 Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.


Asunto(s)
Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Fase S/fisiología , Animales , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Xenopus laevis
6.
Dev Cell ; 45(5): 637-650.e7, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29870721

RESUMEN

Mitosis is induced by the activation of the cyclin B/cdk1 feedback loop that creates a bistable state. The triggering factor promoting active cyclin B/cdk1 switch has been assigned to cyclin B/cdk1 accumulation during G2. However, this complex is rapidly inactivated by Wee1/Myt1-dependent phosphorylation of cdk1 making unlikely a triggering role of this kinase in mitotic commitment. Here we show that cyclin A/cdk1 kinase is the factor triggering mitosis. Cyclin A/cdk1 phosphorylates Bora to promote Aurora A-dependent Plk1 phosphorylation and activation and mitotic entry. We demonstrate that Bora phosphorylation by cyclin A/cdk1 is both necessary and sufficient for mitotic commitment. Finally, we identify a site in Bora whose phosphorylation by cyclin A/cdk1 is required for mitotic entry. We constructed a mathematical model confirming the essential role of this kinase in mitotic commitment. Overall, our results uncover the molecular mechanism by which cyclin A/cdk1 triggers mitotic entry.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Mitosis/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Ciclina A/genética , Activación Enzimática , Femenino , Modelos Teóricos , Fosforilación , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Int J Dev Biol ; 60(7-8-9): 245-254, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27759153

RESUMEN

Entry into mitosis requires the coordinated activation of various protein kinases and phosphatases that together activate sequential signaling pathways allowing entry, progression and exit of mitosis. The limiting step is thought to be the activation of the mitotic Cdk1-cyclin B kinase. However, this model has recently evolved with new data showing that in addition to the Cdk1-cyclin B complex, Greatwall (Gwl) kinase is also required to enter into and maintain mitosis. This new concept proposes that entry into mitosis is now based on the combined activation of both kinases Cdk1-cyclin B and Gwl, the former promoting massive phosphorylation of mitotic substrates and the latter inhibiting PP2A-B55 phosphatase responsible for dephosphorylation of these substrates. Activated Gwl phosphorylates both Arpp19 and ENSA, which associate and inhibit PP2A-B55. This pathway seems relatively well conserved from yeast to humans, although some differences appear based on models or techniques used. While Gwl is activated by phosphorylation, its inactivation requires dephosphorylation of critical residues. Several phosphatases such as PP1, PP2A-B55 and FCP1 are required to control the dephosphorylation and inactivation of Gwl and a properly regulated mitotic exit. Gwl has also been reported to be involved in cancer processes and DNA damage recovery. These new findings support the idea that the Gwl-Arpp19/ENSA-PP2A-B55 pathway is essential to achieve an efficient division of cells and to maintain genomic stability.


Asunto(s)
Meiosis/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Fosforilación , Xenopus laevis
9.
J Cell Sci ; 129(7): 1329-39, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906418

RESUMEN

Entry into mitosis is induced by the activation of cyclin-B-Cdk1 and Greatwall (Gwl; also known as MASTL in mammals) kinases. Cyclin-B-Cdk1 phosphorylates mitotic substrates, whereas Gwl activation promotes the phosphorylation of the small proteins Arpp19 and ENSA. Phosphorylated Arpp19 and/or ENSA bind to and inhibit PP2A comprising the B55 subunit (PP2A-B55; B55 is also known as PPP2R2A), the phosphatase responsible for cyclin-B-Cdk1 substrate dephosphorylation, allowing the stable phosphorylation of mitotic proteins. Upon mitotic exit, cyclin-B-Cdk1 and Gwl kinases are inactivated, and mitotic substrates are dephosphorylated. Here, we have identified protein phosphatase-1 (PP1) as the phosphatase involved in the dephosphorylation of the activating site (Ser875) of Gwl. Depletion of PP1 from meioticXenopusegg extracts maintains phosphorylation of Ser875, as well as the full activity of this kinase, resulting in a block of meiotic and mitotic exit. By contrast, preventing the reactivation of PP2A-B55 through the addition of a hyperactive Gwl mutant (GwlK72M) mainly affected Gwl dephosphorylation on Thr194, resulting in partial inactivation of Gwl and in the incomplete exit from mitosis or meiosis. We also show that when PP2A-B55 is fully reactivated by depleting Arpp19, this protein phosphatase is able to dephosphorylate both activating sites, even in the absence of PP1.


Asunto(s)
Meiosis/fisiología , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Activación Enzimática , Femenino , Masculino , Óvulo/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Xenopus , Proteínas de Xenopus/genética
10.
Elife ; 42015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26613407

RESUMEN

The PP2A phosphatase is often inactivated in cancer and is considered as a tumour suppressor. A new pathway controlling PP2A activity in mitosis has been recently described. This pathway includes the Greatwall (GWL) kinase and its substrates endosulfines. At mitotic entry, GWL is activated and phosphorylates endosulfines that then bind and inhibit PP2A. We analysed whether GWL overexpression could participate in cancer development. We show that GWL overexpression promotes cell transformation and increases invasive capacities of cells through hyperphosphorylation of the oncogenic kinase AKT. Interestingly, AKT hyperphosphorylation induced by GWL is independent of endosulfines. Rather, GWL induces GSK3 kinase dephosphorylation in its inhibitory sites and subsequent SCF-dependent degradation of the PHLPP phosphatase responsible for AKT dephosphorylation. In line with its oncogenic activity, we find that GWL is often overexpressed in human colorectal tumoral tissues. Thus, GWL is a human oncoprotein that promotes the hyperactivation of AKT via the degradation of its phosphatase, PHLPP, in human malignancies.


Asunto(s)
Transformación Celular Neoplásica , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Ligasas SKP Cullina F-box/metabolismo
12.
Mol Cell Biol ; 31(11): 2262-75, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21444715

RESUMEN

Here we investigate the mechanisms regulating Greatwall (Gwl), a serine/threonine kinase essential for promoting the correct timing of mitosis. We identify Gwl as a unique AGC kinase that, unlike most AGC members, appears to be devoid of a hydrophobic motif despite the presence of a functional hydrophobic pocket. Our results suggest that Gwl activation could be mediated by the binding of its hydrophobic pocket to the hydrophobic motif of another AGC kinase. Our molecular modeling and mutagenic analysis also indicate that Gwl displays a conserved tail/linker site whose phosphorylation mediates kinase activation by promoting the interaction of this phosphorylated residue with two lysines at the N terminus. This interaction could stabilize the αC-helix and maintain kinase activity. Finally, the different phosphorylation sites on Gwl are identified, and the role of each one in the regulation of Gwl kinase activity is determined. Our data suggest that only the phosphorylation of the tail/linker site, located outside the putative T loop, appears to be essential for Gwl activation. In summary, our results identify Gwl as a member of the AGC family of kinases that appears to be regulated by unique mechanisms and that differs from the other members of this family.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Datos de Secuencia Molecular , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/inmunología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Xenopus , Proteínas de Xenopus/inmunología
13.
Science ; 330(6011): 1673-7, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21164014

RESUMEN

Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.


Asunto(s)
Mitosis , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Interfase , Datos de Secuencia Molecular , Oocitos , Péptidos/química , Fosfoproteínas/química , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 107(28): 12564-9, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20538976

RESUMEN

Here we show that the functional human ortholog of Greatwall protein kinase (Gwl) is the microtubule-associated serine/threonine kinase-like protein, MAST-L. This kinase promotes mitotic entry and maintenance in human cells by inhibiting protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates cyclin B-Cdc2 substrates. The complete depletion of Gwl by siRNA arrests human cells in G2. When the levels of this kinase are only partially depleted, however, cells enter into mitosis with multiple defects and fail to inactivate the spindle assembly checkpoint (SAC). The ability of cells to remain arrested in mitosis by the SAC appears to be directly proportional to the amount of Gwl remaining. Thus, when Gwl is only slightly reduced, cells arrest at prometaphase. More complete depletion correlates with the premature dephosphorylation of cyclin B-Cdc2 substrates, inactivation of the SAC, and subsequent exit from mitosis with severe cytokinesis defects. These phenotypes appear to be mediated by PP2A, as they could be rescued by either a double Gwl/PP2A knockdown or by the inhibition of this phosphatase with okadaic acid. These results suggest that the balance between cyclin B-Cdc2 and PP2A must be tightly regulated for correct mitotic entry and exit and that Gwl is crucial for mediating this regulation in somatic human cells.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Ciclina B/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclo Celular/genética , Ciclina B1 , Humanos , Mitosis/efectos de los fármacos , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
15.
J Cell Sci ; 123(Pt 13): 2281-91, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20554897

RESUMEN

Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.


Asunto(s)
Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Factor Promotor de Maduración/metabolismo , Metafase/fisiología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Xenopus laevis , Fosfatasas cdc25/metabolismo
16.
EMBO J ; 28(18): 2786-93, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19680222

RESUMEN

Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B-Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B-Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B-Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B-Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A-dependent dephosphorylation of cyclin B-Cdc2 substrates is increased in GW-depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B-Cdc2 but also by the regulation of PP2A by GW.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Mitosis , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Núcleo Celular/metabolismo , Humanos , Masculino , Microcistinas/metabolismo , Modelos Biológicos , Ácido Ocadaico/metabolismo , Oocitos/metabolismo , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Espermatozoides/metabolismo , Proteínas de Xenopus/química
17.
EMBO Rep ; 8(1): 91-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17159919

RESUMEN

The anaphase-promoting complex (APC) early mitotic inhibitor 1 (Emi1) is required to induce S- and M-phase entries by stimulating the accumulation of cyclin A and cyclin B through APC(Cdh1/cdc20) inhibition. In this report, we show that Emi1 proteolysis can be induced by cyclin A/cdk (cdk for cyclin-dependent kinase). Paradoxically, Emi1 is stable during G2 phase, when cyclin A/cdk, Plx1 and SCF(betatrcp) (SCF for Skp1-Cul1-Fbox protein)--which play a role in its degradation--are active. Here, we identify Pin1 as a new regulator of Emi1 that induces Emi1 stabilization by preventing its association with SCF(betatrcp). We show that Pin1 binds to Emi1 and prevents its association with betatrcp in an isomerization-dependent pathway. We also show that Emi1-Pin1 binding is present in vivo in XL2 cells during G2 phase and that this association protects Emi1 from being degraded during this phase of the cell cycle. We propose that S- and M-phase entries are mediated by the accumulation of cyclin A and cyclin B through a Pin1-dependent stabilization of Emi1 during G2.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Extractos Celulares/química , Ciclina A/metabolismo , Ciclina A/farmacología , Ciclina B/metabolismo , Ciclina B/farmacología , Quinasas Ciclina-Dependientes/farmacología , Fase G2 , Humanos , Inmunoprecipitación , Mitosis , Peptidilprolil Isomerasa de Interacción con NIMA , Xenopus , Proteínas de Xenopus/análisis , Proteínas de Xenopus/genética
18.
Methods Mol Biol ; 322: 223-34, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16739727

RESUMEN

Events controlling cell division are governed by the degradation of different regulatory proteins by the ubiquitin-dependent pathway. In this pathway, the attachment of a polyubiquitin chain to a substrate by an ubiquitin-ligase targets this substrate for degradation. Xenopus egg extracts present many advantages for the study of the cell cycle, including the availability of a large quantity of material synchronized at a particular phase of the cell cycle. In this chapter, we describe various protocols used in Xenopus egg extracts to study the ubiquitination and degradation of different cell cycle regulators. We first provide the method used to obtain interphase- and metaphase II-arrested egg extracts. Subsequently, we describe the protocol employed in these extracts to test the putative ubiquitination and degradation of a protein. Moreover, we describe a detailed practical procedure to test the role of different regulators in the ubiquitin-dependent degradation pathway of a specific protein. To that, we show how to eliminate some of these regulators from the extracts by immunodepletion and how to activate ectopically their function by the translation of their messenger ribonucleic acid. Finally, the Notes provide a series of practical details that explain the different problems that can occur and the possible solutions used to overcome them.


Asunto(s)
Óvulo/metabolismo , Proteínas/metabolismo , Ubiquitina/química , Xenopus , Animales , Extractos Celulares/química , Óvulo/química , Proteínas/química , Ubiquitina/fisiología
19.
Oncogene ; 24(3): 314-25, 2005 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-15678131

RESUMEN

Events controlling cell division are governed by the degradation of different regulatory proteins by the ubiquitin-dependent pathway. In this pathway, the attachment of a polyubiquitin chain to a substrate by an ubiquitin-ligase targets this substrate for degradation by the 26S proteasome. Two different ubiquitin ligases play an important role in the cell cycle: the SCF (Skp1/Cullin/F-box) and the anaphase-promoting complex (APC). In this review, we describe the present knowledge about the APC. We pay particular attention to the latest results concerning APC structure, APC regulation and substrate recognition, and we discuss the implication of these findings in the understanding the APC function.


Asunto(s)
Anafase/fisiología , Ciclo Celular/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ciclosoma-Complejo Promotor de la Anafase , Animales , División Celular , Replicación del ADN , Homeostasis , Mitosis/fisiología , Ubiquitina/metabolismo
20.
Mol Biol Cell ; 15(10): 4584-96, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15269280

RESUMEN

The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Animales , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Oocitos/citología , Oocitos/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología , Huso Acromático/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...