Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 146(2): 537-54, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17324523

RESUMEN

Somatostatin is synthesized and released by aspiny GABAergic interneurons of the neostriatum, some of them identified as low threshold spike generating neurons (LTS-interneurons). These neurons make synaptic contacts with spiny neostriatal projection neurons. However, very few somatostatin actions on projection neurons have been described. The present work reports that somatostatin modulates the Ca(2+) activated K(+) currents (K(Ca) currents) expressed by projection cells. These actions contribute in designing the firing pattern of the spiny projection neuron; which is the output of the neostriatum. Small conductance (SK) and large conductance (BK) K(Ca) currents represent between 30% and 50% of the sustained outward current in spiny cells. Somatostatin reduces SK-type K(+) currents and at the same time enhances BK-type K(+) currents. This dual effect enhances the fast component of the after hyperpolarizing potential while reducing the slow component. Somatostatin then modifies the firing pattern of spiny neurons which changed from a tonic regular pattern to an interrupted "stuttering"-like pattern. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tissue expression analysis of dorsal striatal somatostatinergic receptors (SSTR) mRNA revealed that all five SSTR mRNAs are present. However, single cell RT-PCR profiling suggests that the most probable receptor in charge of this modulation is the SSTR2 receptor. Interestingly, aspiny interneurons may exhibit a "stuttering"-like firing pattern. Therefore, somatostatin actions appear to be the entrainment of projection neurons to the rhythms generated by some interneurons. Somatostatin is then capable of modifying the processing and output of the neostriatum.


Asunto(s)
Potenciales de Acción/fisiología , Cuerpo Estriado/citología , Espinas Dendríticas/metabolismo , Neuronas , Canales de Potasio Calcio-Activados/fisiología , Somatostatina/metabolismo , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Anestésicos Locales/farmacología , Animales , Apamina/farmacología , Calcitonina/farmacología , Espinas Dendríticas/efectos de los fármacos , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Fragmentos de Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Receptores de Somatostatina/clasificación , Receptores de Somatostatina/metabolismo , Somatostatina/farmacología , Tetrodotoxina/farmacología
2.
Neuroscience ; 109(3): 555-67, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11823066

RESUMEN

Somatostatin is synthesized and released by aspiny interneurons of the neostriatum. This work investigates the actions of somatostatin on rat neostriatal neurons of medium size (ca. 6 pF). Somatostatin (1 microM) reduces both calcium action potentials (20 mM tetraethylammonium) by ca. 24% and calcium currents by ca. 35%, in all cells tested. This action was produced in the presence of tetrodotoxin and in dissociated cells and was blocked by cyclo(-7-aminoheptanoyl-phe-d-try-lys-O-benzyl-thr) acetate (CPP-1), a somatostatin receptor antagonist. Except for nitrendipine (5 microM), several calcium channel antagonists, 1 microM omega-conotoxin GVIA, 400 nM omega-agatoxin TK, and 1 microM omega-conotoxin MVIIC, partially occluded somatostatin action. According to the calcium channel types known to be blocked by these antagonists, P/Q-type channels appeared to be the channels mainly modulated by somatostatin, followed by N-type channels. Since these channel types generate the afterhyperpolarizing potential in spiny neurons, we investigated the action of somatostatin on this event. Somatostatin reduces the amplitude of the afterhyperpolarizing potential by ca. 39%. This action is occluded by omega-agatoxin TK and omega-conotoxin MVIIC but not by omega-conotoxin GVIA or nicardipine. Thus, the action of somatostatin on the afterhyperpolarizing potential is mainly mediated by P/Q-type calcium channels. The block of the slow afterhyperpolarizing potential made most neurons exhibit an irregular firing mode, suggesting that ion currents other than calcium may also be affected by somatostatin. We conclude that somatostatin exerts a direct postsynaptic effect on neostriatal neurons via the activation of somatostatin receptors. This action affects non-L-type calcium channels and therefore modifies the afterhyperpolarizing potential and the firing pattern. It is proposed that somatostatin and its analogues may have profound effects on the motor functions controlled by the basal ganglia.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Lisina/análogos & derivados , Neostriado/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Somatostatina/análogos & derivados , Somatostatina/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Neostriado/citología , Neostriado/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Wistar , Somatostatina/antagonistas & inhibidores , Somatostatina/farmacología , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
3.
J Neurosci ; 19(9): 3629-38, 1999 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-10212321

RESUMEN

It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.


Asunto(s)
Acetilcolina/fisiología , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Neostriado/fisiología , Neuronas/fisiología , Receptores Muscarínicos/fisiología , Animales , Cloruro de Cadmio/farmacología , Cesio/farmacología , Cloruros/farmacología , Estimulación Eléctrica , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Muscarina/farmacología , Neuronas/efectos de los fármacos , Fisostigmina/farmacología , Pirenzepina/análogos & derivados , Pirenzepina/farmacología , Ratas , Receptor Muscarínico M1 , Receptor Muscarínico M2 , Receptor Muscarínico M3 , Receptor Muscarínico M4 , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA