Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 651(Pt 2): 2450-2459, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30336435

RESUMEN

Blood is considered a suitable biomonitoring matrix for evaluating relatively recent exposure to environmental contaminants since abrupt changes in exposure regimes are rapidly reflected in blood. On the other hand, keratinized tissues, such as turtle scutes, are known to integrate trace element exposure over relatively long time periods. This study aimed to test the use of the differences in blood and scute to inform on the historical trace element exposure of green turtles. We propose a blood-scute kinetic model to predict how an increase in exposure would affect the concentrations in these two matrices over time. We then tested the relationship between blood and scute concentrations for 19 trace elements in two green turtle populations presumed to experience relatively constant exposure conditions. Significant log-log and linear correlations were observed between blood and scute concentrations for Co, As, Mo, Sb, and Cd. We then analysed blood-scute ratios in turtles from two coastal sites with known elevated exposure to various trace elements from previous studies. Deviations from the steady-state were clearly evident in these coastal turtles (for Co and Cd) and were consistent with the model prediction of changes in exposure. These field data provide evidence that blood-scute ratios can provide a valuable tool for examining the historical trace element exposure of turtles. We further present a method by which the general model may be refined and validated, by using data from individual turtles that had been recaptured across multiple years. Although the timeframe and number of recaptured samples available for this study were limited, the temporal changes in blood-scute ratios in these animals were generally consistent with those suggested by the model. Thus, the ratio between paired blood and scute trace element concentrations could be used to establish a temporal exposure index in turtles.


Asunto(s)
Escamas de Animales/química , Oligoelementos/metabolismo , Tortugas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Monitoreo del Ambiente/métodos , Femenino , Masculino , Análisis Espacio-Temporal , Distribución Tisular , Toxicocinética , Oligoelementos/sangre , Tortugas/sangre , Contaminantes Químicos del Agua/sangre
2.
Environ Pollut ; 220(Pt B): 1465-1476, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27825845

RESUMEN

Exposure to essential and non-essential elements may be elevated for green sea turtles (Chelonia mydas) that forage close to shore. Biomonitoring of trace elements in turtle blood can identify temporal trends over repeated sampling events, but any interpretation of potential health risks due to an elevated exposure first requires a comparison against a baseline. This study aims to use clinical reference interval (RI) methods to produce exposure baseline limits for essential and non-essential elements (Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, and Pb) using blood from healthy subadult turtles foraging in a remote and offshore part of the Great Barrier Reef. Subsequent blood biomonitoring of three additional coastal populations, which forage in areas dominated by agricultural, urban and military activities, showed clear habitat-specific differences in blood metal profiles relative to the those observed in the offshore population. Coastal turtles were most often found to have elevated concentrations of Co, Mo, Mn, Mg, Na, As, Sb, and Pb relative to the corresponding RIs. In particular, blood from turtles from the agricultural site had Co concentrations ranging from 160 to 840 µg/L (4-25 times above RI), which are within the order expected to elicit acute effects in many vertebrates. Additional clinical blood biochemistry and haematology results indicate signs of a systemic disease and the prevalence of an active inflammatory response in a high proportion (44%) of turtles from the agricultural site. Elevated Co, Sb, and Mn in the blood of these turtles significantly correlated with elevated markers of acute inflammation (total white cell counts) and liver dysfunction (alkaline phosphatase and total bilirubin). The results of this study support the notion that elevated trace element exposures may be adversely affecting the health of nearshore green sea turtles.


Asunto(s)
Oligoelementos/análisis , Tortugas/sangre , Contaminantes Químicos del Agua/análisis , Animales , Biomarcadores/sangre , Monitoreo del Ambiente/métodos , Masculino , Valores de Referencia , Oligoelementos/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Sci Total Environ ; 512-513: 613-621, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25655987

RESUMEN

Biomonitoring of blood is commonly used to identify and quantify occupational or environmental exposure to chemical contaminants. Increasingly, this technique has been applied to wildlife contaminant monitoring, including for green turtles, allowing for the non-lethal evaluation of chemical exposure in their nearshore environment. The sources, composition, bioavailability and toxicity of metals in the marine environment are, however, often unknown and influenced by numerous biotic and abiotic factors. These factors can vary considerably across time and space making the selection of the most informative elements for biomonitoring challenging. This study aimed to validate an ICP-MS multi-element screening method for green turtle blood in order to identify and facilitate prioritisation of target metals for subsequent fully quantitative analysis. Multi-element screening provided semiquantitative results for 70 elements, 28 of which were also determined through fully quantitative analysis. Of the 28 comparable elements, 23 of the semiquantitative results had an accuracy between 67% and 112% relative to the fully quantified values. In lieu of any available turtle certified reference materials (CRMs), we evaluated the use of human blood CRMs as a matrix surrogate for quality control, and compared two commonly used sample preparation methods for matrix related effects. The results demonstrate that human blood provides an appropriate matrix for use as a quality control material in the fully quantitative analysis of metals in turtle blood. An example for the application of this screening method is provided by comparing screening results from blood of green turtles foraging in an urban and rural region in Queensland, Australia. Potential targets for future metal biomonitoring in these regions were identified by this approach.


Asunto(s)
Monitoreo del Ambiente/métodos , Metales/sangre , Tortugas/sangre , Contaminantes Químicos del Agua/sangre , Animales , Queensland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA