Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Immunother Cancer ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39029925

RESUMEN

BACKGROUND: Natural killer (NK) cell therapy is considered an attractive and safe strategy for anticancer therapy. Nevertheless, when autologous or allogenic NK cells are used alone, the clinical benefit has been disappointing. This is partially due to the lack of target specificity. Recently, CD19-specific chimeric antigen receptor (CAR)-NK cells have proven to be safe and potent in patients with B-cell tumors. However, the generation of CAR-NK cells is a complicated manufacturing process. We aim at developing a targeted NK cell therapy without the need for cellular genetic modifications. We took advantage of the natural expression of the IgG Fc receptor CD16a (FcγRIIIa) to induce strong antigen-specific effector functions through antibody-dependent cell-mediated cytotoxicity (ADCC). We have generated the new technology "Pin", which enables the arming of modified monoclonal antibodies (mAbs) onto the CD16a of ex vivo expanded NK (eNK) cells. Methods Ex vivo eNK were prepared from umbilical cord blood cells and expanded using interleukin (IL)-2/IL-15 and Epstein-Barr virus (EBV)-transformed B-lymphoblastoid feeder cells. mAbs were engineered with four substitutions called Pin mutations to increase their affinity to CD16a. eNK were incubated with anti-CD20 or anti-CD19 Pin-mAbs to generate "armed" eNK and were used to assess effector functions in vitro on cancer cell lines, lymphoma patient cells and in vivo. RESULTS: CD16a/Pin-mAb interaction is stable for several days and Pin-mAb eNK inherit the mAb specificity and exclusively induce ADCC against targets expressing the cognate antigen. Hence, Pin-mAbs confer long-term selectivity to eNK, which allows specific elimination of the target cells in several in vivo mouse models. Finally, we showed that it is possible to arm eNK with at least two Pin-mAbs simultaneously, to increase efficacy against heterogenous cancer cell populations. CONCLUSIONS: The Pin technology provides an off-the-shelf NK cell therapy platform to generate CAR-like NK cells, without genetic modifications, that easily target multiple tumor antigens.


Asunto(s)
Células Asesinas Naturales , Receptores de IgG , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Animales , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/inmunología , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Antígenos CD19/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología
2.
J Immunother Cancer ; 12(1)2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38290768

RESUMEN

INTRODUCTION: Triple-negative breast cancer (TNBC) prognosis is poor. Immunotherapies to enhance the antibody-induced natural killer (NK) cell antitumor activity are emerging for TNBC that is frequently immunogenic. The aspartic protease cathepsin D (cath-D), a tumor cell-associated extracellular protein with protumor activity and a poor prognosis marker in TNBC, is a prime target for antibody-based therapy to induce NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This study investigated whether Fc-engineered anti-cath-D antibodies trigger ADCC, their impact on antitumor efficacy and tumor-infiltrating NK cells, and their relevance for combinatory therapy in TNBC. METHODS: Cath-D expression and localization in TNBC samples were evaluated by western blotting, immunofluorescence, and immunohistochemistry. The binding of human anti-cath-D F1M1 and Fc-engineered antibody variants, which enhance (F1M1-Fc+) or prevent (F1M1-Fc-) affinity for CD16a, to secreted human and murine cath-D was analyzed by ELISA, and to CD16a by surface plasmon resonance and flow cytometry. NK cell activation was investigated by flow cytometry, and ADCC by lactate dehydrogenase release. The antitumor efficacy of F1M1 Fc-variants was investigated using TNBC cell xenografts in nude mice. NK cell recruitment, activation, and cytotoxic activity were analyzed in MDA-MB-231 cell xenografts by immunophenotyping and RT-qPCR. NK cells were depleted using an anti-asialo GM1 antibody. F1M1-Fc+ antitumor effect was assessed in TNBC patient-derived xenografts (PDXs) and TNBC SUM159 cell xenografts, and in combination with paclitaxel or enzalutamide. RESULTS: Cath-D expression on the TNBC cell surface could be exploited to induce ADCC. F1M1 Fc-variants recognized human and mouse cath-D. F1M1-Fc+ activated NK cells in vitro and induced ADCC against TNBC cells and cancer-associated fibroblasts more efficiently than F1M1. F1M1-Fc- was ineffective. In the MDA-MB-231 cell xenograft model, F1M1-Fc+ displayed higher antitumor activity than F1M1, whereas F1M1-Fc- was less effective, reflecting the importance of Fc-dependent mechanisms in vivo. F1M1-Fc+ triggered tumor-infiltrating NK cell recruitment, activation and cytotoxic activity in MDA-MB-231 cell xenografts. NK cell depletion impaired F1M1-Fc+ antitumor activity, demonstrating their key role. F1M1-Fc+ inhibited growth of SUM159 cell xenografts and two TNBC PDXs. In combination therapy, F1M1-Fc+ improved paclitaxel and enzalutamide therapeutic efficacy without toxicity. CONCLUSIONS: F1M1-Fc+ is a promising immunotherapy for TNBC that could be combined with conventional regimens, including chemotherapy or antiandrogens.


Asunto(s)
Antineoplásicos , Benzamidas , Nitrilos , Feniltiohidantoína , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Catepsina D , Ratones Desnudos , Línea Celular Tumoral , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/uso terapéutico , Células Asesinas Naturales , Fragmentos Fc de Inmunoglobulinas
3.
Oncoimmunology ; 12(1): 2283353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126036

RESUMEN

FcRγ-deficient natural killer (NK) cells, designated as g-NK cells, exhibit enhanced antibody-dependent cellular cytotoxicity (ADCC) capacity and increased IFN-γ and TNF-α production, rendering them promising for antiviral and antitumor responses. g-NK cells from peripheral blood (PB) are often associated with prior human cytomegalovirus (HCMV) infection. However, the prevalence, phenotype, and function of g-NK cells in umbilical cord blood (UCB-g-NK) remain unclear. Here, we demonstrate significant phenotypical differences between UCB-g-NK and PB-g-NK cells. Unlike PB-g-NK cells, UCB-g-NK cells did not show heightened cytokine production upon CD16 engagement, in contrast to the conventional NK (c-NK) cell counterparts. Interestingly, following in vitro activation, UCB-g-NK cells also exhibited elevated levels of IFN-γ production, particularly when co-cultured with HCMV and plasma from g-NK+ adults. Furthermore, g-NK+ plasma from PB even facilitated the in vitro expansion of UCB-g-NK cells. These findings underscore the phenotypic and functional heterogeneity of g-NK cells based on their origin and demonstrate that components within g-NK+ plasma may directly contribute to the acquisition of an adult phenotype by the "immature" UCB-g-NK cells.


Asunto(s)
Sangre Fetal , Activación de Linfocitos , Adulto , Humanos , Células Asesinas Naturales , Citotoxicidad Celular Dependiente de Anticuerpos , Citomegalovirus
4.
Front Immunol ; 14: 1227064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841273

RESUMEN

Objective: Natural killer (NK) cells are a part of the innate immune system and first-line defense against cancer. Since they possess natural mechanisms to recognize and kill tumor cells, NK cells are considered as a potential option for an off-the-shelf allogeneic cell-based immunotherapy. Here, our objective was to identify the optimal cytokine-based, feeder-free, activation and expansion protocol for cytotoxic NK cells against glioblastoma in vitro. Methods: NK cells were enriched from human peripheral blood and expanded for 16 days with different activation and cytokine combinations. The expansion conditions were evaluated based on NK cell viability, functionality, expansion rate and purity. The cytotoxicity and degranulation of the expanded NK cells were measured in vitro from co­cultures with the glioma cell lines U­87 MG, U­87 MG EGFR vIII, LN-229, U-118 and DK-MG. The best expansion protocols were selected from ultimately 39 different conditions: three magnetic cell­selection steps (Depletion of CD3+ cells, enrichment of CD56+ cells, and depletion of CD3+ cells followed by enrichment of CD56+ cells); four activation protocols (continuous, pre-activation, re-activation, and boost); and four cytokine combinations (IL-2/15, IL­21/15, IL­27/18/15 and IL-12/18/15). Results: The expansion rates varied between 2-50-fold, depending on the donor and the expansion conditions. The best expansion rate and purity were gained with sequential selection (Depletion of CD3+ cells and enrichment of CD56+ cells) from the starting material and pre-activation with IL­12/18/15 cytokines, which are known to produce cytokine-induced memory-like NK cells. The cytotoxicity of these memory-like NK cells was enhanced with re-activation, diminishing the donor variation. The most cytotoxic NK cells were produced when cells were boosted at the end of the expansion with IL-12/18/15 or IL-21/15. Conclusion: According to our findings the ex vivo proliferation capacity and functionality of NK cells is affected by multiple factors, such as the donor, composition of starting material, cytokine combination and the activation protocol. The cytokines modified the NK cells' phenotype and functionality, which was evident in their reactivity against the glioma cell lines. To our knowledge, this is the first comprehensive comparative study performed to this extent, and these findings could be used for upscaling clinical NK cell manufacturing.


Asunto(s)
Citocinas , Glioblastoma , Humanos , Citocinas/metabolismo , Células Asesinas Naturales , Fenotipo , Interleucina-12
5.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686362

RESUMEN

Therapies based on allogenic Natural Killer (NK) cells are becoming increasingly relevant, and our laboratory has produced expanded and activated NK (eNK) cells that are highly cytotoxic against several hematological cancers when used alone or in combination with currently approved therapeutic monoclonal antibodies. In order to produce eNK cells, healthy human donor NK cells undergo a 20-day expansion protocol with IL-2, IL-15 and Epstein-Barr virus (EBV)-transformed lymphoblastoid feeder cells. In order to produce an even more potent eNK-based therapy, we must elucidate the changes our protocol produces within healthy NK cells. To understand the post-transcriptional changes responsible for the increased cytolytic abilities of eNK cells, we performed microRNA (miRNA) expression analysis on purified NK cells from day 0 and day 20 of the protocol using quantitative reverse transcription PCR (RT-qPCR). Of the 384 miRNAs profiled, we observed changes in the expression of 64 miRNAs, with especially significant changes in 7 of them. The up-regulated miRNAs of note were miRs-146a, -124, -34a, and -10a, which are key in the regulation of cell survival through the modulation of pro-apoptotic genes such as PUMA. The down-regulation of miRs-199a, -223, and -340 was also detected and is associated with the promotion of NK cell cytotoxicity. We validated our analysis using immunoblot and flow cytometry studies on specific downstream targets of both up- and down-regulated miRNAs such as PUMA and Granzyme B. These results corroborate the functional importance of the described miRNA expression patterns and show the wide variety of changes that occur in eNK cells at day 20.


Asunto(s)
Infecciones por Virus de Epstein-Barr , MicroARNs , Humanos , Herpesvirus Humano 4/genética , Proteínas Reguladoras de la Apoptosis , Células Asesinas Naturales , MicroARNs/genética
6.
Front Immunol ; 14: 1199594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593736

RESUMEN

The innate immune lymphocyte lineage natural killer (NK) cell infiltrates tumor environment where it can recognize and eliminate tumor cells. NK cell tumor infiltration is linked to patient prognosis. However, it is unknown if some of these antitumor NK cells leave the tumor environment. In blood-borne cancers, NK cells that have interacted with leukemic cells are recognized by the co-expression of two CD45 isoforms (CD45RARO cells) and/or the plasma membrane presence of tumor antigens (Ag), which NK cells acquire by trogocytosis. We evaluated solid tumor Ag uptake by trogocytosis on NK cells by performing co-cultures in vitro. We analyzed NK population subsets by unsupervised dimensional reduction techniques in blood samples from breast tumor (BC) patients and healthy donors (HD). We confirmed that NK cells perform trogocytosis from solid cancer cells in vitro. The extent of trogocytosis depends on the target cell and the antigen, but not on the amount of Ag expressed by the target cell or the sensitivity to NK cell killing. We identified by FlowSOM (Self-Organizing Maps) several NK cell clusters differentially abundant between BC patients and HD, including anti-tumor NK subsets with phenotype CD45RARO+CD107a+. These analyses showed that bona-fide NK cells that have degranulated were increased in patients and, additionally, these NK cells exhibit trogocytosis of solid tumor Ag on their surface. However, the frequency of NK cells that have trogocytosed is very low and much lower than that found in hematological cancer patients, suggesting that the number of NK cells that exit the tumor environment is scarce. To our knowledge, this is the first report describing the presence of solid tumor markers on circulating NK subsets from breast tumor patients. This NK cell immune profiling could lead to generate novel strategies to complement established therapies for BC patients or to the use of peripheral blood NK cells in the theranostic of solid cancer patients after treatment.


Asunto(s)
Neoplasias de la Mama , Neoplasias Hematológicas , Neoplasias Mamarias Animales , Animales , Humanos , Femenino , Antígenos de Neoplasias , Células Asesinas Naturales , Membrana Celular
7.
MAbs ; 15(1): 2211692, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184206

RESUMEN

The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches. These two days of exchanges allowed a rich discussion among the various actors in the field of therapeutic antibodies.


Asunto(s)
Anticuerpos Monoclonales , Inmunoterapia Adoptiva , Anticuerpos Monoclonales/uso terapéutico , Francia
8.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831451

RESUMEN

CD20 monoclonal antibodies (mAbs) eliminate B cells in several clinical contexts. At least two of these Abs, obinutuzumab (OBI) and rituximab (RTX), induce quick elimination of targets and put cancer patients at risk of tumor lysis syndrome (TLS) within 12-24 h of the first dose. The mechanisms of killing can require the recruiting of effector mechanisms from the patient's immune system, but they can induce direct killing as well. This can be more rapid than recruiting cellular effectors and/or complement. We showed here that OBI and RTX induce quick (<1 h) and high (up to 60% for OBI) killing of two different B cell lines. This was unveiled by using two different techniques that circumvent cell centrifugation steps: a Muse® Cell Analyzer-based approach and a direct examination of the cells' physical properties by using forward scatter (FS) area and side scatter (SS) area by flow cytometry. These results excluded the presence of aggregates and were also confirmed by developing a normalized survival ratio based on the co-incubation of RTX- and OBI-sensitive cells with MOLM-13, an insensitive cell line. Finally, this normalized survival ratio protocol confirmed the RTX- and OBI-direct killing on primary tumor B cells from B cell chronic lymphocytic leukemia (B-CLL) and Non-Hodgkin's lymphoma (NHL) patients. Moreover, we unveiled that direct killing is higher than previously expected and absent in patients' samples at relapse. We also observed that these mAbs, prior to increasing intracellular calcium levels, decrease calcium entry, although manipulating calcium levels did not affect their cytotoxicity. Altogether, our results show that direct killing is a major mechanism to induce cell death by RTX and OBI mAbs.

9.
Int J Pharm ; 630: 122463, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462738

RESUMEN

COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs. Lung administration of antibodies would be more relevant requiring lower doses, thus reducing the costs and the side effects. But aerosolization of therapeutic proteins is very challenging, as the different processes available are harsh and trigger protein aggregation and conformational changes. This decreases the efficiency of the treatment, and can increase its immunogenicity. To address those issues, we developed a series of new excipients composed of a trehalose core, a succinyl side chain and a hydrophobic carbon chain (from 8 to 16 carbons). Succinylation increased the solubility of the excipients, allowing their use at relevant concentrations for protein stabilization. In particular, the excipient with 16 carbons (C16TreSuc) used at 5.6 mM was able to preserve colloidal stability and antigen-binding ability of sotrovimab during the nebulization process. It could also be used as a cryoprotectant, allowing storage of sotrovimab in a lyophilized form during weeks. Finally, we demonstrated that C16TreSuc could be used as an excipient to stabilize antibodies for the treatment against COVID-19, by in vitro and in vivo assays. The presence of C16TreSuc during nebulization preserved the neutralization capacity of sotrovimab against SARS-CoV-2 in vitro; an increase of its efficacy was even observed, compared to the non-nebulized control. The in vivo study also showed the wide distribution of sotrovimab in mice lungs, after nebulization with 5.6 mM of excipient. This work brings a solution to stabilize therapeutic proteins during storage and nebulization, making pulmonary immunotherapy possible in the treatment of COVID-19 and other lung diseases.


Asunto(s)
COVID-19 , Excipientes , Ratones , Animales , Excipientes/química , Trehalosa/química , SARS-CoV-2 , Anticuerpos Antivirales
10.
Nutrients ; 14(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014937

RESUMEN

Background: During the COVID-19 pandemic, different non-validated tests were proposed to simplify the diagnosis of gestational diabetes (GDM). Aim: To analyse the effects of replacing the two-step approach for Early-GDM and GDM diagnosis, with a fasting plasma glucose test. Material and Methods: This is a cohort study consisting of 3200 pregnant women: 400 with Early-GDM, 800 with GDM and 2000 with Non-GDM diagnosed using the two-step approach. Using fasting plasma glucose for Early-GDM and GDM diagnosis, according to the recommendations of Spain, Australia, Italy and the UK during the pandemic, the rates of missed and new Early-GDM and GDM were calculated and perinatal outcomes were analysed. Results: Using fasting plasma glucose in the first trimester >100 mg/dL for Early-GDM diagnosis, the rates of post-COVID missed and new Early-GDM were 79.5% and 3.2%, respectively. Using fasting plasma glucose at 24−28 weeks <84 or >92, 95 or 100 mg/dL for GDM diagnosis, the rates of missed GDM were 50.4%, 78%, 82.6% and 92.4%, respectively, and 8.6%, 5.6% and 2.3% women with Non-GDM were diagnosed with new GDM. Conclusion: Fasting plasma glucose is not a good test for the diagnosis of GDM either in the first trimester or at 24−28 weeks.


Asunto(s)
COVID-19 , Diabetes Gestacional , Glucemia , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Estudios de Cohortes , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/epidemiología , Ayuno , Femenino , Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Pandemias , Embarazo
11.
Front Immunol ; 13: 913215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720368

RESUMEN

Antibody-dependent cell-mediated cytotoxicity (ADCC) is a potent cytotoxic mechanism that is mainly mediated in humans by natural killer (NK) cells. ADCC mediates the clinical benefit of several widely used cytolytic monoclonal antibodies (mAbs), and increasing its efficacy would improve cancer immunotherapy. CD16a is a receptor for the Fc portion of IgGs and is responsible to trigger NK cell-mediated ADCC. The knowledge of the mechanism of action of CD16a gave rise to several strategies to improve ADCC, by working on either the mAbs or the NK cell. In this review, we give an overview of CD16a biology and describe the latest strategies employed to improve antibody-dependent NK cell cytotoxicity.


Asunto(s)
Antineoplásicos Inmunológicos , Receptores de IgG , Anticuerpos Monoclonales/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biología , Humanos , Inmunoterapia , Células Asesinas Naturales
12.
Cells ; 11(9)2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35563698

RESUMEN

Cells have metabolic flexibility that allows them to adapt to changes in substrate availability. Two highly relevant metabolites are glucose and fatty acids (FA), and hence, glycolysis and fatty acid oxidation (FAO) are key metabolic pathways leading to energy production. Both pathways affect each other, and in the absence of one substrate, metabolic flexibility allows cells to maintain sufficient energy production. Here, we show that glucose starvation or sustained pyruvate dehydrogenase (PDH) activation by dichloroacetate (DCA) induce large genetic remodeling to propel FAO. The extracellular signal-regulated kinase 5 (ERK5) is a key effector of this multistep metabolic remodeling. First, there is an increase in the lipid transport by expression of low-density lipoprotein receptor-related proteins (LRP), e.g., CD36, LRP1 and others. Second, an increase in the expression of members of the acyl-CoA synthetase long-chain (ACSL) family activates FA. Finally, the expression of the enzymes that catalyze the initial step in each cycle of FAO, i.e., the acyl-CoA dehydrogenases (ACADs), is induced. All of these pathways lead to enhanced cellular FAO. In summary, we show here that different families of enzymes, which are essential to perform FAO, are regulated by the signaling pathway, i.e., MEK5/ERK5, which transduces changes from the environment to genetic adaptations.


Asunto(s)
Glucosa , Proteína Quinasa 7 Activada por Mitógenos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Piruvatos
13.
Vaccines (Basel) ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632444

RESUMEN

NK cells play a major role in the antiviral immune response, including against HIV-1. HIV-1 patients have impaired NK cell activity with a decrease in CD56dim NK cells and an increase in the CD56-CD16+ subset, and recently it has been proposed that a population of CD56+NKG2C+KIR+CD57+ cells represents antiviral memory NK cells. Antiretroviral therapy (ART) partly restores the functional activity of this lymphocyte lineage. NK cells when interacting with their targets can gain antigens from them by the process of trogocytosis. Here we show that NK cells can obtain CCR5 and CXCR4, but barely CD4, from T cell lines by trogocytosis in vitro. By UMAP (Uniform Manifold Approximation and Projection), we show that aviremic HIV-1 patients have unique NK cell clusters that include cells expressing CCR5, NKG2C and KIRs, but lack CD57 expression. Viremic patients have a larger proportion of CXCR4+ and CCR5+ NK cells than healthy donors (HD) and this is largely increased in CD107+ cells, suggesting a link between degranulation and trogocytosis. In agreement, UMAP identified a specific NK cell cluster in viremic HIV-1 patients, which contains most of the CD107a+, CCR5+ and CXCR4+ cells. However, this cluster lacks NKG2C expression. Therefore, NK cells can gain CCR5 and CXCR4 by trogocytosis, which depends on degranulation.

14.
Sci Rep ; 12(1): 3234, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217717

RESUMEN

Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.


Asunto(s)
Antineoplásicos , Leucemia , Proteína p53 Supresora de Tumor , Antineoplásicos/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia/inmunología , Leucemia/metabolismo , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteína p53 Supresora de Tumor/inmunología , Proteína p53 Supresora de Tumor/metabolismo
15.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159200

RESUMEN

Natural killer (NK) cell-based therapies have emerged as promising anticancer treatments due to their potency as cytolytic effectors and synergy with concurrent treatments. Multiple myeloma (MM) is an aggressive B-cell malignancy that, despite development of novel therapeutic agents, remains incurable with a high rate of relapse. In MM, the inhospitable tumor microenvironment prevents host NK cells from exerting their cytolytic function. The development of NK cell immunotherapy works to overcome this altered immune landscape and can be classified in two major groups based on the origin of the cell: autologous or allogeneic. In this review, we compare the treatments in each group, such as autologous chimeric antigen receptor (CAR) NKs and allogeneic off-the-shelf NK cell infusions, and their combinatorial effect with existing MM therapies including monoclonal antibodies and proteasome inhibitors. We also discuss their placement in clinical treatment regimens based on the immune profile of each patient. Through this examination, we would like to discover precisely when each NK cell-based treatment will produce the maximum benefit to the MM patient.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Células Asesinas Naturales , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia , Receptores Quiméricos de Antígenos/uso terapéutico , Microambiente Tumoral
16.
Sci Rep ; 12(1): 1341, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079096

RESUMEN

Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.


Asunto(s)
Molécula 1 de Adhesión Intercelular/fisiología , Metformina/farmacología , Neoplasias/tratamiento farmacológico , Animales , Humanos , Células Asesinas Naturales , Masculino , Ratones , Ratones Endogámicos NOD , Células Tumorales Cultivadas
17.
J Control Release ; 341: 578-590, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915070

RESUMEN

Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.


Asunto(s)
Polímeros , Animales , Preparaciones de Acción Retardada/química , Ratones , Polímeros/química
18.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33658388

RESUMEN

Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.


Asunto(s)
Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Antígeno Ki-67/metabolismo , Neoplasias Mamarias Animales/metabolismo , Proteínas de Neoplasias/metabolismo , Transcripción Genética , Animales , Carcinogénesis/genética , Femenino , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Antígeno Ki-67/genética , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética
19.
Vaccines (Basel) ; 8(4)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276644

RESUMEN

The lymphocyte lineage natural killer (NK) cell is part of the innate immune system and protects against pathogens and tumor cells. NK cells are the main cell effectors of the monoclonal antibodies (mAbs) that mediates antibody-dependent cell cytotoxicity (ADCC). Hence, it is relevant to understand NK physiology and status to investigate the biological effect of mAbs in the clinic. NK cells are heterogeneous with multiple subsets that may have specific activity against different attacks. The presence of viral-sculpted NK cell populations has already been described, but the presence of cancer-sculpted NK cells remains unknown. Cancer induces a broad NK cell dysfunction, which has not been linked to a specific population. Here, we investigated the NK cell population by Uniform Manifold Approximation and Projection (UMAP) embed maps in Hodgkin lymphoma (HL) and acute myeloid leukemia (AML) patients at diagnosis and at least 30 days after treatment, which correlates with tumor cell clearance. We found that the NK lineage largely responded to the tumor by generating antitumor NK cells and renewing the population with a subset of immature NK cells. However, we failed to identify a specific "memory-like" subset with the NK cell markers used. Moreover, in patients in relapse, we found essentially the same NK populations as those found at diagnosis, suggesting that NK cells equally respond to the first or second tumor rise. Finally, we observed that previous cytomegalovirus (CMV) infection largely affects the tumor-associated changes in NK population, but the CMV-associated CD57+NKG2C+ NK cell population does not appear to play any role in tumor immunity.

20.
Rev. esp. nutr. comunitaria ; 26(4): 0-0, oct.-dic. 2020. tab, graf
Artículo en Español | IBECS | ID: ibc-200107

RESUMEN

FUNDAMENTOS: Se ha diseñado un estudio para conocer la adecuación de la oferta alimentaria de los comedores escolares de la Comunitat Valenciana a los referenciales nacionales de la Estrategia NAOS. MÉTODOS: Estudio descriptivo transversal de requisitos relacionados con la oferta alimentaria de 507 centros escolares de diversa titularidad y valoración de la adecuación de los menús mensuales a las recomendaciones de consenso nacional a través de un índice creado al efecto. RESULTADOS: El 41,8% de los centros cumplieron las recomendaciones para verduras y hortalizas; el 49,9% para fruta fresca; el 79,9% para legumbres y el 92,1% para pescado. Un 83,6% de centros respetó las limitaciones establecidas para alimentos precocinados. La adecuación a las recomendaciones NAOS para verduras, legumbres y precocinados fue más baja en los centros de titularidad privada. CONCLUSIONES: La adecuación de la oferta alimentaria a los indicadores NAOS en comedores escolares de la Comunitat Valenciana se puede considerar medio alta, si bien ofrece un margen importante de mejora que se ha de promover. La adecuación es más prevalente en los centros de titularidad pública que en los privados. La utilización del índice propuesto resulta útil para realizar el seguimiento de la oferta alimentaria en los comedores escolares


BACKGROUND: A study has been designed to find out the adequacy of the food supply of school canteens in the Valencia Region to the national benchmarks of the NAOS Strategy. METHODS: Cross-sectional descriptive study of aspects related to the food supply of 507 schools of different ownership and assessment of the adequacy of the monthly menus to the national consensus recommendations through an index created for this purpose. RESULTS: 41.8% of the centers fulfilled the recommendations for vegetables; 49.9% for fresh fruit; 79.9% for pulses and 92.1% for fish. 83.6% of centers respected the limitations established for precooked foods. The compliance with the NAOS recommendations for vegetables, legumes and precooked products was lower in private centers. CONCLUSIONS: The adequacy of the food supply to the NAOS indicators in school canteens in the Valencia Region can be considered medium high, although it offers an important margin for improvement that must be promoted. Adequacy is more prevalent in publicly owned centers than in private centers. Using the proposed index is useful for monitoring the food supply in school canteens


Asunto(s)
Humanos , Alimentación Escolar/normas , Dieta Saludable , Política Nutricional , Estudios Transversales , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...