Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(8): e202301005, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38126627

RESUMEN

The conversion of biomass and natural wastes into carbon-based materials for various applications such as catalysts and energy-related materials is a fascinating and sustainable approach emerged during recent years. Precursor nature and characteristics are complex, hence, their effect on the properties of resulting materials is still unclear. In this work, we have investigated the effect of different precursors and pyrolysis temperature on the properties of produced carbon materials and their potential application as negative electrode materials in Li-ion batteries. Three biomasses, lignocellulosic brewery spent grain from a local brewery, catechol-rich lignin and tannins, were selected for investigations. We show that such end-product carbon characteristic as functional and elemental composition, porosity, specific surface area, defectiveness level, and morphology strictly depend on the precursor composition, chemical structure, and pyrolysis temperature. The electrochemical characteristics of produced carbon materials correlate with the characteristics of the produced materials. A higher pyrolysis temperature is shown to be favourable for production of carbon material for the Li-ion battery application in terms of both specific capacity and long-term cycling stability.

2.
Biomacromolecules ; 22(2): 898-906, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33410657

RESUMEN

A new type of polysaccharide (hemicellulose) nanocrystal, bearing the shape of an anisotropic nanoflake, emerged from a dimethyl sulfoxide (DMSO) dispersion of wood-based xylan through heat-induced crystallization. The dimensions of these xylan nanocrystals were controlled by the crystallization conditions. Sharp signals in solid-state NMR indicated a well-ordered crystal structure. The unit cell is constituted of two asymmetric xylose residues, and DMSO molecules resided in a host-guest type of arrangement with more than one local environment. This corroborates with the identical 1H NMR relaxation time between DMSO and xylan, indicative of intimate mixing of the two at the tens of nanometer length scale. X-ray and electron diffraction indicated a 2-fold helical helix along the chain in a monoclinic unit cell with an antiparallel arrangement, with chains placed on the 2-fold helix axes: at the corner and at the center. The 2-fold helical structure is unique for xylan for which only a 3-fold helical form has been reported. The DMSO molecules participated in the crystallization, and they were shown to be vital in stabilizing the crystalline structure. The manipulation of temperature, concentration, and incubation time of the xylan/DMSO dispersion provided pathways for the crystallization to form size-adjustable nanocrystals. As 20-30% of biomass consists of hemicelluloses, this work will serve as a starting point to understand the controlled assembly of hemicelluloses to discover their full application potential.


Asunto(s)
Dimetilsulfóxido , Nanopartículas , Cristalización , Temperatura , Xilanos
3.
RSC Adv ; 11(44): 27512-27522, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35480675

RESUMEN

Feathers, an industrial by-product, are a valuable source of keratin that could be used, for example, in the preparation of films for biomedical and packaging applications. However, the utilisation of feather keratin requires scalable processes to convert feathers into a feasible keratin stream. This paper shows how deep eutectic solvent (DES) fractionated feathers could be converted into strong films. In the DES fractionation process, two keratin fractions with different molecular weights were obtained. The films made of the high molecular weight keratin fraction had better mechanical properties and stability against moisture than the films made of the low molecular weight keratin fraction. The strength properties were further improved by cross-linking the keratin with diglycidyl ether enabling the formation of a uniform keratin network, whereas glutaraldehyde did not show a clear cross-linking effect. These keratin films could be used, for example, in food packaging or medical applications such as wound care.

4.
Carbohydr Polym ; 251: 117015, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152849

RESUMEN

We report a facile chemical method to convert the hydroxyl groups of hydroxypropyl cellulose (HPC) into carbamates. It was achieved by the reaction of HPC with N-methyl carbamoylimidazole, which is a safe and easy to handle replacement for the particularly hazardous reagent methyl isocyanate. Using a series of HPC with a range of molar substitution of hydroxypropyl groups, we synthesized HPC methylcarbamates showing lower critical solution temperature (LCST) in the range between 94 and 15 °C. A linear dependence of LCST versus methylcarbamate degree of substitution is observed. The lower the initial hydroxypropyl content of HPC, the greater the effect of methylcarbamate on the LCST. Surface tension study showed that methylcarbamate modification has an insignificant effect on the hydrophilic-hydrophobic balance of the macromolecules below LCST unless the molecular substitution of hydroxypropyl groups is so low (0.8) that the native cellulose OH groups can react with N-methyl carbamoylimidazole.


Asunto(s)
Celulosa/análogos & derivados , Transición de Fase , Carbamatos/química , Celulosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Soluciones , Temperatura
5.
RSC Adv ; 9(34): 19720-19728, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35519403

RESUMEN

Poultry feathers, a source of keratin, are a significant side stream from the food industry, for which valorization is essential considering the circular economy aspects. For this, ecofriendly processes are the tools that allow the easy and feasible transformation of the feathers. Deep eutectic solvents (DESs) are generally considered as inexpensive, relatively simple, mild and environmentally friendly solvents which can dissolve proteins from protein-rich biomasses. In this work, feathers were processed with an aqueous DES to produce a uniform keratin feedstock. The proposed DES is composed of non-toxic sodium acetate and urea, with a small amount of water. After the DES treatment, water was used to dilute the DES components and regenerate the dissolved keratin. The processing conditions were optimized in terms of keratin yield and properties by varying the dissolution time from 2 h to 24 h and temperature from 80 °C to 100 °C. The yield of regenerated keratin was followed at different sodium acetate-urea molar ratios, and compared to the treatment performed with choline chloride-urea or 8 M urea as reference solvents. Sodium acetate-urea in the molar ratio of 1 : 2 at 100 °C and with 6 h dissolution time dissolved 86% of the feathers with a regenerated keratin yield of 45%. In the characterization of regenerated keratin, it was found that when the dissolution temperature was higher and the dissolution time longer, the disulfide and total sulfur content of feather keratin decreased, the range of molecular weights became wider, and some of the ordered secondary structure and crystallinity were lost.

6.
Biomacromolecules ; 19(2): 652-661, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29366320

RESUMEN

A wood based yarn platform for capturing pharmaceutical molecules from water was developed. Cellulose fiber yarns were modified with cyclodextrins, and the capture of 17α-ethinyl estradiol (EE2), a synthetic estrogen hormone used as contraceptive, from water was tested. The yarns were prepared by spinning a deep eutectic solution (DES) of cellulose in choline chloride-urea. Despite their high porosity and water sorption capacity (5 g/g), the spun fiber yarns displayed high wet strength, up to 60% of that recorded in dry condition (128 MPa with 17% strain at break). Cyclodextrin irreversible attachment on the yarns was achieved with adsorbed chitosan and the conjugation reactions and capture of EE2 by the cyclodextrin-modified cellulose were confirmed via online detection with Surface Plasmon Resonance (SPR). The facile synthesis of the bioactive yarns and EE2 binding capacity from aqueous matrices (as high as 2.5 mg/g) indicate excellent prospects for inexpensive platforms in disposable affinity filtration. The study presents a strategy to produce a wood fiber based yarn to be used as a platform for human and veterinary pharmaceutical hormone capture.


Asunto(s)
Etinilestradiol/química , Resonancia por Plasmón de Superficie , Madera/química , beta-Ciclodextrinas/química , Animales , Humanos
7.
Sci Rep ; 6: 32420, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599741

RESUMEN

Green chemistry, sustainability and eco-efficiency are guiding the development of the next generation of industrial chemical processes. The use of non-edible lignocellulosic biomass as a source of chemicals and fuels has recently raised interest due to the need for an alternative to fossil resources. Valorisation mainly focuses on cellulose, which has been used for various industrial scale applications for decades. However, creating an economically more viable value chain would require the exploitation of the other main components, hemicellulose and lignin. Here, we present a new low melting mixture composition based in boric acid and choline chloride, and demonstrate its efficiency in the fractionation of wood-based biomass for the production of non-condensed lignin, suitable for further use in the search for sustainable industrial applications, and for the selective conversion of hemicelluloses into valuable platform chemicals.


Asunto(s)
Biocombustibles , Biomasa , Solventes/química , Madera/química , Catálisis , Congelación , Hidrólisis , Lignina/química
8.
Carbohydr Polym ; 113: 67-76, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25256460

RESUMEN

In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.


Asunto(s)
Compuestos de Azabiciclo/química , Celulosa/química , Imidazoles/química , Líquidos Iónicos/química , Termodinámica , Calorimetría , Microscopía , Solubilidad
9.
Pharm Res ; 29(10): 2684-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22203327

RESUMEN

PURPOSE: To study how water plasticization affects the molecular mobility and crystallization tendency of freeze-dried trehalose, sucrose, melibiose and cellobiose. METHODS: Freeze-dried disaccharides were subjected to different relative humidity atmospheres and their physical stabilities were evaluated. Lyophilizate water sorption tendencies and glass transition temperatures were modeled using Brunauer-Emmett-Teller (BET) and Gordon-Taylor (GT) equations, respectively. Sucrose and cellobiose crystallization tendencies were compared by using the concept of reduced crystallization temperature (RCT), and the molecular mobilities of trehalose and melibiose were compared by measuring their T(1)H relaxation time constants. RESULTS: Based on the BET and GT models, water sorption tendency and the resulting plasticizing effect were different in sucrose when compared to the other disaccharides. Trehalose and melibiose exhibited generally slower crystallization rates when compared to sucrose and cellobiose. Amorphous melibiose was shown to be particularly stable within the studied water content range, which may have partly been caused by its relatively slow molecular mobility. CONCLUSIONS: Slow amorphous-to-crystalline transition rate is known to be important for lyoprotecting excipients when formulating a robust drug product. The physical stabilities of amorphous trehalose and melibiose even with relatively high water contents might make their use advantageous in this respect compared to sucrose and cellobiose.


Asunto(s)
Disacáridos/química , Plastificantes/química , Agua/química , Absorción , Cristalización , Almacenaje de Medicamentos , Liofilización/métodos , Humedad , Temperatura de Transición
10.
AAPS PharmSciTech ; 12(2): 637-49, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21560022

RESUMEN

The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP-MAS (13)C nuclear magnetic resonance (NMR), X-ray powder diffraction (XRPD), differential scanning calorimetry, and Fourier transform infrared spectrometry (FTIR) and near-infrared spectroscopy. The morphology of spray-dried chitosan acid salts showed tendency toward higher sphericity when higher temperatures in a spray-drying process were applied. Analysis by XRPD indicated that all chitosan acid salts studied were amorphous solids. Solid-state (13)C NMR spectra revealed the evidence of the partial conversion of chitosan acetate to chitin and also conversion to acetyl amide form which appears to be dependent on the spray-drying process. The FTIR spectra suggested that the organic acids applied in spray drying may interact with chitosan at the position of amino groups to form chitosan salts. With all three chitosan acid salts, the FTIR bands at 1,597 and 1,615 cm(-1) were diminished suggesting that -NH groups are protonated. The FTIR spectra of all chitosan acid salts exhibited ammonium and carboxylate bands at 1,630 and 1,556 cm(-1), respectively. In conclusion, spray drying is a potential method of preparing acid salts from chitosan obtained by deacetylation of chitin from lobster (P. argus) origin.


Asunto(s)
Ácido Acético/química , Química Farmacéutica/métodos , Quitosano/química , Ácido Láctico/química , Ácido Acético/normas , Animales , Química Farmacéutica/normas , Quitosano/aislamiento & purificación , Quitosano/normas , Ácido Láctico/normas , Palinuridae , Tamaño de la Partícula , Sales (Química)/química , Sales (Química)/normas
11.
Int J Pharm ; 394(1-2): 18-25, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20416365

RESUMEN

Active pharmaceutical ingredients (API) often crystallise in several forms with significant differences in their physical properties. In pharmaceutical applications it is very important to be able to identify these polymorphs during drug manufacturing and storaging, also quantitative information about polymorphs is often required. Solid state (13)C cross-polarisation (CP), magic angle spinning (MAS), nuclear magnetic resonance (NMR) spectroscopy was utilised in studying polymorphisity of an API with two polymorphic forms. Quantitative information was obtained from polymorphic mixtures, and a formulated product was also studied in order to determine the possibility of distinguishing between the two polymorphs in a low-dose formulation. Quantitative data was obtained using two methods: integration of signals from the dipolar dephased spectra, and a chemometric method known as Direct Exponential Curve Resolution Algorithm (DECRA). We concluded that the two polymorphs are easily identifiable based on their spectral differences. Quantitative results showed reasonable accuracy, and while identification of the polymorph present in formulation was not possible, traces of the API are detectable in as low dosage as 0.7% by weight using solid state NMR methods.


Asunto(s)
Hidrazonas/química , Espectroscopía de Resonancia Magnética/métodos , Piridazinas/química , Tecnología Farmacéutica/métodos , Algoritmos , Química Farmacéutica/métodos , Cristalización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...