Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 19(5): 3360-71, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10207060

RESUMEN

Aromatic aminotransferase II, product of the ARO9 gene, catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism in Saccharomyces cerevisiae. ARO9 expression is under the dual control of specific induction and nitrogen source regulation. We have here identified UASaro, a 36-bp upstream element necessary and sufficient to promote transcriptional induction of reporter gene expression in response to tryptophan, phenylalanine, or tyrosine. We then isolated mutants in which UASaro-mediated ARO9 transcription is partially or totally impaired. Mutations abolishing ARO9 induction affect a gene called ARO80 (YDR421w), coding for a Zn2Cys6 family transcription factor. A sequence highly similar to UASaro was found upstream from the YDR380w gene encoding a homolog of bacterial indolepyruvate decarboxylase. In yeast, this enzyme is postulated to catalyze the second step of tryptophan catabolism to tryptophol. We show that ARO9 and YDR380w (named ARO10) have similar patterns of transcriptional regulation and are both under the positive control of Aro80p. Nitrogen regulation of ARO9 expression seems not directly to involve the general factor Ure2p, Gln3p, Nil1p, Uga43p, or Gzf3p. ARO9 expression appears, rather, to be mainly regulated by inducer exclusion. Finally, we show that Gap1p, the general amino acid permease, and Wap1p (Ycl025p), a newly discovered inducible amino acid permease with broad specificity, are the main aromatic amino acid transporters for catabolic purposes.


Asunto(s)
Aminoácidos/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética , Transaminasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/genética , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/genética , Genes Reporteros/genética , Datos de Secuencia Molecular , Mutación/genética , Fenilalanina/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Transaminasas/metabolismo , Factores de Transcripción/genética , Triptófano/metabolismo , Tirosina/metabolismo
2.
Mol Cell Biol ; 19(2): 989-1001, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9891035

RESUMEN

The SSY1 gene of Saccharomyces cerevisiae encodes a member of a large family of amino acid permeases. Compared to the 17 other proteins of this family, however, Ssy1p displays unusual structural features reminiscent of those distinguishing the Snf3p and Rgt2p glucose sensors from the other proteins of the sugar transporter family. We show here that SSY1 is required for transcriptional induction, in response to multiple amino acids, of the AGP1 gene encoding a low-affinity, broad-specificity amino acid permease. Total noninduction of the AGP1 gene in the ssy1Delta mutant is not due to impaired incorporation of inducing amino acids. Conversely, AGP1 is strongly induced by tryptophan in a mutant strain largely deficient in tryptophan uptake, but it remains unexpressed in a mutant that accumulates high levels of tryptophan endogenously. Induction of AGP1 requires Uga35p(Dal81p/DurLp), a transcription factor of the Cys6-Zn2 family previously shown to participate in several nitrogen induction pathways. Induction of AGP1 by amino acids also requires Grr1p, the F-box protein of the SCFGrr1 ubiquitin-protein ligase complex also required for transduction of the glucose signal generated by the Snf3p and Rgt2p glucose sensors. Systematic analysis of amino acid permease genes showed that Ssy1p is involved in transcriptional induction of at least five genes in addition to AGP1. Our results show that the amino acid permease homologue Ssy1p is a sensor of external amino acids, coupling availability of amino acids to transcriptional events. The essential role of Grr1p in this amino acid signaling pathway lends further support to the hypothesis that this protein participates in integrating nutrient availability with the cell cycle.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Portadoras , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas de Transporte de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos , Aminoácidos/farmacología , Secuencia de Bases , Ciclo Celular , Cartilla de ADN/genética , Proteínas F-Box , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Mol Gen Genet ; 257(2): 230-7, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9491082

RESUMEN

This paper reports the first isolation of Saccharomyces cerevisiae mutants lacking aromatic aminotransferase I activity (aro8), and of aro8 and aro9 double mutants which are auxotrophic for both phenylalanine and tyrosine, because the second mutation, aro9 affects aromatic aminotransferase II. Neither of the single mutants displays any nutritional requirement on minimal ammonia medium. In vitro, aromatic aminotransferase I is active not only with the aromatic amino acids, but also with methionine, alpha-aminoadipate, and leucine when phenylpyruvate is the amino acceptor, and in the reverse reactions with their oxo-acid analogues and phenylalanine as the amino donor. Its contribution amounts to half of the glutamate:2-oxoadipate activity detected in cell-free extracts and the enzyme might be identical to one of the two known alpha-aminoadipate aminotransferases. Aromatic aminotransferase I has properties of a general aminotransferase which, like several aminotransferases of Escherichia coli, may be able to play a role in several otherwise unrelated metabolic pathways. Aromatic aminotransferase II also has a broader substrate specificity than initially described. In particular, it is responsible for all the measured kynurenine aminotransferase activity. Mutants lacking this activity grow very slowly on kynurenine medium.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Isoenzimas/genética , Liasas , Fenilalanina/biosíntesis , Saccharomyces cerevisiae/genética , Transaminasas/genética , Tirosina/biosíntesis , Aminoácidos/metabolismo , Amoníaco/metabolismo , Medios de Cultivo/metabolismo , Proteínas Fúngicas/metabolismo , Isoenzimas/metabolismo , Quinurenina/metabolismo , Fenotipo , Ácidos Fenilpirúvicos/metabolismo , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Transaminasas/metabolismo , Urea/metabolismo
4.
Mol Gen Genet ; 257(2): 238-48, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9491083

RESUMEN

The ARO8 and ARO9 genes of Saccharomyces cerevisiae were isolated by complementation of the phenylalanine/tyrosine auxotrophy of an aro8 and aro9 double-mutant strain that is defective in aromatic aminotransferase I (aro8) and II (aro9). The genes were sequenced, and deletion mutants were constructed and analysed. The expression of ARO8 and ARO9 was studied. The deduced amino acid sequences of Aro8p and Aro9p suggest that the former is a 500-residue, 56168-Da polypeptide and the latter a 513-residue, 58516-Da polypeptide. They correspond, respectively, to Ygl202p and Yhr137p, two putative proteins of unknown function revealed by systematic sequencing of the yeast genome. We show that aromatic aminotransferases I and II are homologous proteins, members of aminotransferase subgroup I, and, together with three other proteins, they constitute within the subgroup a new subfamily of enzymes specialised for aromatic amino acid and alpha-aminoadipate transamination. ARO8 expression is subject to the general control of amino acid biosynthesis. ARO9 expression is induced when aromatic amino acids are present in the growth medium and also in aro8 mutants grown on minimal ammonia medium. An autonomously replicating sequence (ARS) element is located between the ARO8 gene and YGL201c which encodes a protein of the minichromosome maintenance family.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Isoenzimas/genética , Liasas , Familia de Multigenes , Saccharomyces cerevisiae/genética , Transaminasas/clasificación , Transaminasas/genética , Ácido 2-Aminoadípico/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Amoníaco/metabolismo , Secuencia de Bases , Clonación Molecular , Secuencia de Consenso , Medios de Cultivo/metabolismo , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Inducción Enzimática , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Fenilalanina/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia , Especificidad por Sustrato , Tirosina/biosíntesis , Urea/metabolismo
6.
Mol Cell Biol ; 17(8): 4282-93, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9234685

RESUMEN

Ammonium is a nitrogen source supporting growth of yeast cells at an optimal rate. We recently reported the first characterization of an NH4+ transport protein (Mep1p) in Saccharomyces cerevisiae. Here we describe the characterization of two additional NH4+ transporters, Mep2p and Mep3p, both of which are highly similar to Mep1p. The Mep2 protein displays the highest affinity for NH4+ (Km, 1 to 2 microM), followed closely by Mep1p (Km, 5 to 10 microM) and finally by Mep3p, whose affinity is much lower (Km, approximately 1.4 to 2.1 mM). A strain lacking all three MEP genes cannot grow on media containing less than 5 mM NH4+ as the sole nitrogen source, while the presence of individual NH4+ transporters enables growth on these media. Yet, the three Mep proteins are not essential for growth on NH4+ at high concentrations (>20 mM). Feeding experiments further indicate that the Mep transporters are also required to retain NH4+ inside cells during growth on at least some nitrogen sources other than NH4+. The MEP genes are subject to nitrogen control. In the presence of a good nitrogen source, all three MEP genes are repressed. On a poor nitrogen source, MEP2 expression is much higher than MEP1 and MEP3 expression. High-level MEP2 transcription requires at least one of the two GATA family factors Gln3p and Nil1p, which are involved in transcriptional activation of many other nitrogen-regulated genes. In contrast, expression of either MEP1 or MEP3 requires only Gln3p and is unexpectedly down-regulated in a Nil1p-dependent manner. Analysis of databases suggests that families of NH4+ transporters exist in other organisms as well.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Represoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Proteínas Portadoras/genética , Clonación Molecular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/genética , Cinética , Datos de Secuencia Molecular , Mutación , ARN de Hongos/análisis , ARN Mensajero/análisis , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/fisiología
7.
Mol Microbiol ; 23(6): 1157-68, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9106207

RESUMEN

In Saccharomyces cerevisiae, two positive transcription factors of the GATA family, Gln3p and Nil1p/Gat1p, upregulate the expression of multiple nitrogen pathway genes via upstream 5'-GATA-3' sequences. Another GATA factor, Uga43p/Dal80p, downregulates to varying degrees the expression of some nitrogen-regulated genes. Here, we report the functional analysis of a fourth GATA factor, Gzf3p/Nil2p, whose gene was discovered by systematic sequencing of chromosome X. The Gzf3 protein most closely resembles Uga43p. Similar to Uga43p, Gzf3p has the properties of a negative GATA factor. While Uga43p is active specifically under nitrogen-depression conditions, Gzf3p exerts its negative regulatory function specifically on preferred nitrogen sources: It is involved in nitrogen repression of Nil1p-dependent transcription. At least one positive GATA factor is required for the UGA43 and GZF3 genes to be expressed. The Uga43p factor negatively regulates GZF3 expression and vice versa. In addition, both Uga43p and Gzf3p moderately regulate expression of their own genes. These two proteins seem to be parts of a complex network of GATA factors which probably play a determining role in nitrogen-regulated transcription.


Asunto(s)
Proteínas de Unión al ADN/genética , Nitrógeno/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas de Unión al ADN/fisiología , Factores de Transcripción GATA , Factor de Transcripción GATA4 , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Datos de Secuencia Molecular , Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología
8.
Nucleic Acids Res ; 23(4): 558-64, 1995 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-7899075

RESUMEN

The S. cerevisiae Uga43(Dal80) protein down-regulates the expression of multiple nitrogen pathway genes. It contains a zinc-finger motif similar to the DNA-binding domain of the vertebrate GATA family of transcription factors; this domain is known to direct binding to 5'-GATA-3' core sequences. The inducible UGA4 gene, which encodes the specific gamma-aminobutyrate permease, undergoes strong repression by Uga43p. This study shows that the 5' region of UGA4 contains a UAS element made of four directly repeated 5'-CGAT(A/T) AG-3' sequences. This element, called UASGATA, can potentially confer to the UGA4 gene high-level expression in the absence of inducer, but this potential activity is inhibited by two distinct repression systems. One system is Uga43p-dependent; it operates in cells grown on a poor nitrogen source. The other is the nitrogen repression system, which relies on Ure2p and glutamine and operates when a good nitrogen source is present. Nitrogen repression also blocks the synthesis of Uga43p, making the two repression systems mutually exclusive. Previous studies have shown that expression supported by 5'-GATA-3'-containing UAS elements requires Gln3p, another global nitrogen regulatory factor containing a GATA zinc-finger domain. Although Gln3p contributes to UASGATA activity, evidence suggests that a second factor can potentially direct expression through UASGATA. Expression conferred by this putative factor is subject to both Uga43p- and Ure2p-mediated repression. The role of UASGATA in the expression of the UGA4 gene is discussed in relation to its sensitivity to the two distinct repression systems.


Asunto(s)
ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Transportadores de Anión Orgánico , Priones , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Cromosomas Fúngicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Proteínas Transportadoras de GABA en la Membrana Plasmática , Factores de Transcripción GATA , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glutamina/fisiología , Glutatión Peroxidasa , Datos de Secuencia Molecular , Nitrógeno/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Dedos de Zinc/genética , Ácido gamma-Aminobutírico/farmacología
9.
EMBO J ; 13(15): 3456-63, 1994 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-8062822

RESUMEN

In Saccharomyces cerevisiae, the transport of ammonium across the plasma membrane for use as a nitrogen source is mediated by at least two functionally distinct transport systems whose respective encoding genes are called MEP1 and MEP2. Mutations in the MEP2 gene affect high affinity, low capacity ammonium transport while mutations in the MEP1 gene disrupt a lower affinity, higher capacity system. In this work, the MEP1 gene has been cloned and sequenced and its expression analyzed. The predicted amino acid sequence reveals a highly hydrophobic, 54 kDa protein with 10 or 11 putative membrane-spanning regions. The predicted Mep1p protein shares high sequence similarity with several bacterial proteins of unknown function, notably the product of the nitrogen-regulated nrgA gene of Bacillus subtilis, and with that of a partial cDNA sequence derived from Caenorhabditis elegans. The Mep1p and related proteins appear to define a new family of transmembrane proteins evolutionarily conserved in at least bacteria, fungi and animals. The MEP1 gene is most highly expressed when the cells are grown on low concentrations of ammonium or on 'poor' nitrogen sources like urea or proline. It is down-regulated, on the other hand, when the concentration of ammonium is high or when other 'good' nitrogen sources like glutamine or asparagine are supplied in the culture medium. The overall properties of Mep1p indicate that it is a transporter of ammonium. Its main function appears to be to enable cells grown under nitrogen-limiting conditions to incorporate ammonium present at relatively low concentrations in the growth medium.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Transporte de Catión , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Compuestos de Amonio Cuaternario/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Aminoácidos/análisis , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Clonación Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Transporte Iónico , Metilaminas/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/análisis , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transcripción Genética
10.
Proc Natl Acad Sci U S A ; 90(23): 11172-6, 1993 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-8248224

RESUMEN

We have identified the gene DYN1, which encodes the heavy chain of cytoplasmic dynein in the yeast Saccharomyces cerevisiae. The predicted amino acid sequence (M(r) 471,305) reveals the presence of four P-loop motifs, as in all dyneins known so far, and has 28% overall identity to the dynein heavy chain of Dictyostelium [Koonce, M. P., Grissom, P. M. & McIntosh, J. R. (1992) J. Cell Biol. 119, 1597-1604] with 40% identity in the putative motor domain. Disruption of DYN1 causes misalignment of the spindle relative to the bud neck during cell division and results in abnormal distribution of the dividing nuclei between the mother cell and the bud. Cytoplasmic dynein, by generating force along cytoplasmic microtubules, may play an important role in the proper alignment of the mitotic spindle in yeast.


Asunto(s)
Dineínas/genética , Genes Fúngicos , Mitosis , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Citoplasma/enzimología , Datos de Secuencia Molecular , Mutagénesis Insercional , Mapeo Restrictivo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Curr Genet ; 21(4-5): 301-7, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1525858

RESUMEN

The UGA43 gene of Saccharomyces cerevisiae is required for repression of inducible genes involved in the utilization of 4-aminobutyric acid (GABA) or urea as nitrogen sources. The UGA43 gene has been cloned by complementation of a uga43 mutation. The N-terminal region of the UGA43 protein is very similar to the DNA-binding zinc-finger region typical of the GATA regulatory factor family in vertebrates. UGA43 is the first reported instance of a GATA protein with a negative regulatory function. The C-terminal region of the predicted UGA43 protein contains a putative leucine zipper. Sequencing of three uga43 mutant alleles suggests that the GATA and putative leucine-zipper regions are both required for the repressive activity of UGA43. UGA43 appears to be a highly regulated gene. On "poor" nitrogen sources, UGA43 transcripts are measured at high levels whereas they are nearly undetectable in conditions of nitrogen catabolite repression. The levels measured on "poor" nitrogen sources are further increased in uga43 mutant cells, suggesting that UGA43 exerts negative autoregulation.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Regulación Fúngica de la Expresión Génica/genética , Leucina Zippers/genética , Datos de Secuencia Molecular , Mutación , Nitrógeno/farmacología , Dedos de Zinc/genética , Ácido gamma-Aminobutírico/metabolismo
12.
Gene ; 97(2): 163-71, 1991 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-1999281

RESUMEN

The UGA35 gene of Saccharomyces cerevisiae (also called DURL) encodes a positive regulator of the expression of structural genes involved in 4-aminobutyric acid (GABA) and urea catabolisms. The UGA35 gene has been cloned by complementation of function and identified by chromosomal gene replacement. The sequence of this regulatory gene and its flanking regions has been established. Our data reveal an open reading frame of 2892 nt, corresponding to 964 amino acids (aa). The deduced UGA35 aa sequence shares several similarities with that of other regulatory proteins, suggesting that the UGA35 gene encodes a DNA-binding transcriptional activator. We also show that UGA35 and the DAL81 regulatory gene controlling allantoin and urea catabolisms are one and the same gene. This means that the same factor is required for specific induction of three distinct catabolic pathways, namely those involved in GABA, urea and allantoin utilization as nitrogen sources.


Asunto(s)
Genes Reguladores , Saccharomyces cerevisiae/genética , Alantoína/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Genes Fúngicos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , Urea/metabolismo
13.
Eur J Biochem ; 187(3): 611-6, 1990 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-2406136

RESUMEN

In the yeast Saccharomyces cerevisiae, induction of the 4-aminobutyrate-catabolic pathway by 4-aminobutyrate requires two positive regulatory factors, encoded by the UGA3 and the UGA35 genes respectively. In addition to this, expression of one gene of this pathway, namely the UGA4 gene encoding the 4-aminobutyrate-specific permease, is controlled negatively by the product of the UGA43 gene [Vissers, S., André, B., Muyldermans, F. & Grenson, M. (1989) Eur. J. Biochem. 181, 357-361]. We show here that the products of two of these regulatory genes, UGA35 and UGA43, also control the expression of the genes encoding the urea-catabolic pathway, although the 4-aminobutyrate and urea-catabolic pathways are synthesised under specific conditions and do not share any enzymatic step or metabolite: the UGA35 pathways are synthesised under specific conditions and do not share any enzymatic step or metabolite: the UGA35 gene is shown to be identical to the DURL gene which was previously identified as a positive regulatory factor of the urea-catabolic pathway; the UGA43 gene product is shown to behave like a negative regulatory factor of this pathway. In contrast to UGA35/DURL and UGA43, the positive regulatory factors encoded by the UGA3 gene and the previously identified DURM gene specifically control 4-aminobutyrate and urea catabolisms respectively. Northern hybridization experiments suggest that the UGA35/DURL and UGA43 common regulatory factors act at the transcriptional level. Our results show that the expression of two biochemically distinct nitrogenous catabolisms, as triggered by their respective inducers, seems to involve multiple regulatory factors, some of which are common to the two catabolic pathways.


Asunto(s)
Aminobutiratos/metabolismo , Regulación Enzimológica de la Expresión Génica , Genes Fúngicos , Genes Reguladores/fisiología , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Urea/metabolismo , Aminobutiratos/farmacología , Amoníaco/metabolismo , Inducción Enzimática/genética , Genes , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Químicos , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
14.
Eur J Biochem ; 181(2): 357-61, 1989 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-2653828

RESUMEN

In Saccharomyces cerevisiae, the pathway of 4-aminobutyric acid catabolism, for use as a nitrogen source, involves a specific permease (encoded by the UGA4 gene) and two enzymes (encoded by the UGA1 and UGA2 genes, respectively). The synthesis of these proteins is induced by 4-aminobutyrate. It also requires the product of the UGA3 gene. Here, we describe four additional regulatory mutations which provide evidence for the existence of both positive and negative regulatory elements which control the final expression of the UGA4 gene. Some of them simultaneously control the expression of the UGA1 and UGA2 genes. Three classes of mutant with a constitutive 4-aminobutyrate-specific permease have been isolated. (a) Recessive mutations in the UGA43 gene suggest that the product of the UGA43 gene behaves like a trans-acting negative regulator of UGA4 gene expression. (b) The semi-dominant mutation (uga11), closely linked to the UGA4 gene, might affect the receptor of the UGA43 gene product. In these two classes of mutant, only the permease is constitutive. (3) The uga81 mutation, closely linked to the UGA3 gene, makes the whole UGA regulon constitutive. On the other hand, recessive mutations at the UGA35 gene locus lead to non-inducibility of the UGA regulon. Hence the UGA35 gene product behaves like a second trans-acting positive regulator in addition to UGA3.


Asunto(s)
Genes Fúngicos , Genes Reguladores , Genes , Proteínas de Transporte de Membrana/genética , Transportadores de Anión Orgánico , Saccharomyces cerevisiae/genética , Inducción Enzimática , Proteínas Transportadoras de GABA en la Membrana Plasmática , Regulación de la Expresión Génica , Cinética , Proteínas de Transporte de Membrana/biosíntesis , Mutación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae
15.
Eur J Biochem ; 164(3): 601-6, 1987 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-3552672

RESUMEN

The proline permease gene PUT4 has been cloned. Nitrogen-source regulation ('ammonia sensitivity') of this and at least two other amino-acid permeases is believed to occur at two distinct levels, i.e. permease synthesis and permease activity. Therefore, PUT4 transcription/messenger stability was examined in the ammonia- and proline-grown wild type as well as in mutant strains supposedly affected at only one or at both of these levels. We report transcript-level repression of proline permease synthesis in ammonia-grown cells. Repression is lifted at this level in gdhCR, gln1ts and gdhA mutants which exhibit pleiotropically derepressed permease and catabolic enzyme activities. On the other hand, the npi1 and npi2 mutations, formerly called mut2 and mut4, relieve an inactivation process which seems only to affect permeases. These mutations do not affect the detected PUT4 RNA level. The only known positive factor in proline permease regulation, the nitrogen permease reactivator protein Npr1, is believed to counteract the inactivation process on derepressing media. This protein appears to have an additional, indirect effect on PUT4 transcription/messenger stability: it would actually mediate repression via its activating effect on ammonia uptake.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Genes Fúngicos , Genes , Proteínas de Transporte de Membrana/genética , Nitrógeno/metabolismo , ARN de Hongos/análisis , Saccharomyces cerevisiae/enzimología , Clonación Molecular , Proteínas de Transporte de Membrana/metabolismo , Mutación , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Transformación Genética
16.
Eur J Biochem ; 164(3): 607-12, 1987 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-3552673

RESUMEN

The NPR1 gene codes for a protein, called the nitrogen permease reactivator protein or Npr1, which appears to promote the activity of several permeases for nitrogenous substances under conditions of nitrogen catabolite derepression, but fails to do so in the presence of ammonium ions. This gene has been cloned. Its transcription seems unaffected by growth on ammonia, so any ammonia regulation of Npr1 function most likely occurs at another level. In order to elucidate further the mechanism of permease inactivation, which requires an intact NPI1 gene product (NPI1 for nitrogen permease inactivator gene, formerly termed MUT2) and the role of Npr1 in counteracting this process, we have studied the effects of NPR1 and NPI1 gene dosage on general amino-acid permease activity. On nitrogen-derepressing media, NPR1 gene dose can be increased from 1 copy in a diploid to 16 plasmid-borne copies in a haploid strain without altering general amino-acid permease activity. On minimal ammonia medium, the plasmid-bearing haploid cells exhibit low but increased general amino-acid permease activity with respect to non-transformed cells. The adverse effect of the NPI1 gene product on general amino-acid permease activity is reduced when NPI1 gene dose is decreased to 1 gene copy in a diploid strain, regardless of the nitrogen source. We hypothesize that this product inactivates the permease by stoichiometric binding and that the Npr1 protein or a product of its catalytic action opposes this binding under conditions of nitrogen derepression.


Asunto(s)
Amoníaco/farmacología , Genes Fúngicos , Proteínas de Transporte de Membrana/genética , ARN de Hongos/análisis , Saccharomyces cerevisiae/enzimología , Sistemas de Transporte de Aminoácidos , Clonación Molecular , ADN de Hongos/análisis , Activación Enzimática , Regulación de la Expresión Génica , Mutación , Saccharomyces cerevisiae/genética
17.
Eur J Biochem ; 159(3): 507-11, 1986 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-3758074

RESUMEN

In Agrobacterium tumefaciens and Rhizobia arginine can be used as the sole nitrogenous nutrient via degradation by an inducible arginase. These microorganisms were found to exhibit arginine inhibition of ornithine carbamoyltransferase activity. This inhibition is competitive with respect to ornithine (Km for ornithine = 0.8 mM; Ki for arginine = 0.05 mM). This type of urea cycle regulation has not been observed among other microorganisms which degrade arginine via an arginase. The competitive pattern of this inhibition leads to its being inoperative in ornithine-grown cells, where the intracellular concentration of ornithine is high. In arginine-grown cells, however, the intracellular arginine and ornithine concentrations are compatible with inhibition and ornithine recycling appears to be effectively blocked in vivo.


Asunto(s)
Arginina/metabolismo , Ornitina Carbamoiltransferasa/metabolismo , Rhizobium/enzimología , Rhizobium/metabolismo , Urea/metabolismo , Aminoácidos/metabolismo , Arginina/fisiología , Retroalimentación , Ornitina Carbamoiltransferasa/antagonistas & inhibidores , Especificidad de la Especie , Ureasa/metabolismo
19.
Eur J Biochem ; 123(3): 611-6, 1982 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-6122575

RESUMEN

Glutamine synthetase activity is modulated by nitrogen repression and by two distinct inactivation processes. Addition of glutamine to exponentially grown yeast leads to enzyme inactivation. 50% of glutamine synthetase activity is lost after 30 min (a quarter of the generation time). Removing glutamine from the growth medium results in a rapid recovery of enzyme activity. A regulatory mutation (gdhCR mutation) suppresses this inactivation by glutamine in addition to its derepressing effect on enzymes involved in nitrogen catabolism. The gdhCR mutation also increases the level of proteinase B in exponentially grown yeast. Inactivation of glutamine synthetase is also observed during nitrogen starvation. This inactivation is irreversible and consists very probably of a proteolytic degradation. Indeed, strains bearing proteinase A, B and C mutations are no longer inactivated under nitrogen starvation.


Asunto(s)
Glutamato-Amoníaco Ligasa/fisiología , Saccharomyces cerevisiae/enzimología , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/genética , Mutación , Nitrógeno/farmacología
20.
EMBO J ; 1(9): 1125-31, 1982.
Artículo en Inglés | MEDLINE | ID: mdl-6329729

RESUMEN

The Saccharomyces cerevisiae gene cargA + or CAR1 , encoding arginase has been cloned by recovering function in transformed yeast cells. It was used to analyse RNA and chromosomal DNA from six strains bearing cis-dominant regulatory mutations leading to constitutive arginase synthesis. The DNA from the four cargA + O- strains in which constitutive arginase synthesis was independent of the mating-type functions showed no detectable differences with the wild- typye . The cargA + O- mutations were, therefore, small alterations, possibly single base substitutions. On the other hand, the cargA + Oh-1 and cargA + Oh-2 mutations, leading to a constitutive and mating-type dependent arginase synthesis, were identified as insertions. Their size and restriction pattern strongly suggested that they were induced by the Ty1 yeast transposable element. This was confirmed by cloning and analysis of the cargA + Oh-1 mutant gene. The concentration of arginase RNA was significantly increased in the mutants, indicating that the regulation of arginase synthesis was exerted, at least in part, at the level of RNA synthesis or stability. In the cargA + Oh-2 strain the Ty1 element was located at a distance of approximately 600 base pairs from the insertion present in the cargA + Oh-1 strain. This result suggests either a surprisingly large arginase regulatory region or an indirect influence of the Ty1 element on gene expression over long distances.


Asunto(s)
Arginasa/genética , Clonación Molecular , Genes Dominantes , Genes Fúngicos , Genes del Tipo Sexual de los Hongos , Genes Reguladores , Genes , Secuencia de Bases , Enzimas de Restricción del ADN , ADN de Hongos/genética , Hibridación de Ácido Nucleico , Plásmidos , Biosíntesis de Proteínas , ARN de Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA