Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 7: 1672, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826291

RESUMEN

The survival of some pathotypes of Escherichia coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA) was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-ß-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA, and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at moderately low pH and survival of extremely low pH depend mostly on different cellular functions.

2.
Front Microbiol ; 6: 150, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25762991

RESUMEN

Two fermentation types exist in the Enterobacteriaceae family. Mixed-acid fermenters produce substantial amounts of lactate, formate, acetate, and succinate, resulting in lethal medium acidification. On the other hand, 2,3-butanediol fermenters switch to the production of the neutral compounds acetoin and 2,3-butanediol and even deacidify the environment after an initial acidification phase, thereby avoiding cell death. We equipped three mixed-acid fermenters (Salmonella Typhimurium, S. Enteritidis and Shigella flexneri) with the acetoin pathway from Serratia plymuthica to investigate the mechanisms of deacidification. Acetoin production caused attenuated acidification during exponential growth in all three bacteria, but stationary-phase deacidification was only observed in Escherichia coli and Salmonella, suggesting that it was not due to the consumption of protons accompanying acetoin production. To identify the mechanism, 34 transposon mutants of acetoin-producing E. coli that no longer deacidified the culture medium were isolated. The mutations mapped to 16 genes, all involved in formate metabolism. Formate is an end product of mixed-acid fermentation that can be converted to H2 and CO2 by the formate hydrogen lyase (FHL) complex, a reaction that consumes protons and thus can explain medium deacidification. When hycE, encoding the large subunit of hydrogenase 3 that is part of the FHL complex, was deleted in acetoin-producing E. coli, deacidification capacity was lost. Metabolite analysis in E. coli showed that introduction of the acetoin pathway reduced lactate and acetate production, but increased glucose consumption and formate and ethanol production. Analysis of a hycE mutant in S. plymuthica confirmed that medium deacidification in this organism is also mediated by FHL. These findings improve our understanding of the physiology and function of fermentation pathways in Enterobacteriaceae.

3.
Environ Microbiol ; 17(5): 1586-99, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25142185

RESUMEN

Many bacteria are able to assume a transient cell wall-deficient (or L-form) state under favourable osmotic conditions. Cell wall stress such as exposure to ß-lactam antibiotics can enforce the transition to and maintenance of this state. L-forms actively proliferate and can return to the walled state upon removal of the inducing agent. We have adopted Escherichia coli as a model system for the controlled transition to and reversion from the L-form state, and have studied these dynamics with genetics, cell biology and 'omics' technologies. As such, a transposon mutagenesis screen underscored the requirement for the Rcs phosphorelay and colanic acid synthesis, while proteomics show only little differences between rods and L-forms. In contrast, metabolome comparison reveals the high abundance of lysophospholipids and phospholipids with unsaturated or cyclopropanized fatty acids in E. coli L-forms. This increase of membrane lipids associated with increased membrane fluidity may facilitate proliferation through bud formation. Visualization of the residual peptidoglycan with a fluorescently labelled peptidoglycan binding protein indicates de novo cell wall synthesis and a role for septal peptidoglycan synthesis during bud constriction. The DD-carboxypeptidases PBP5 and PBP6 are threefold and fourfold upregulated in L-forms, indicating a specific role for regulation of crosslinking during L-form proliferation.


Asunto(s)
Pared Celular/metabolismo , Escherichia coli/metabolismo , Lípidos de la Membrana/metabolismo , Peptidoglicano/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Biblioteca de Genes , Modelos Biológicos , Proteínas de Unión a las Penicilinas/biosíntesis , Proteínas de Unión a las Penicilinas/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/biosíntesis , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Resistencia betalactámica/genética , beta-Lactamas/farmacología
4.
Appl Environ Microbiol ; 80(19): 6054-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063653

RESUMEN

Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods.


Asunto(s)
Acetoína/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Serratia/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Operón/genética
5.
Int J Food Microbiol ; 175: 36-44, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24531037

RESUMEN

The mechanisms by which Enterobacteriaceae can survive or grow at low pH are of interest because members of this family are increasingly linked to problems of spoilage and foodborne infection related to mildly acidic foods. In this work, we investigated the contribution of the 2,3-butanediol fermentation pathway in coping with specific forms of acid stress in Serratia plymuthica RVH1. This pathway consumes intracellular protons, similar to the amino acid decarboxylases which are involved in acid resistance in Enterobacteriaceae. While its role in preventing excessive acidification in media with an initial neutral pH but containing fermentable sugars has been established, we here addressed the question whether it supports survival of severe acid challenge (pH2.5-3.5) and/or enhances the ability to initiate growth at moderately low pH (pH4.0-5.0) in acidified LB medium and in tomato juice. Using a budAB::cat mutant, deficient in 2,3-butanediol fermentation, we showed that the pathway did not influence survival in simulated gastric fluid and is not involved in the acid tolerance response (ATR) in S. plymuthica RVH1. On the other hand, the pathway promoted growth at moderately low pH. In acidified LB medium, the mutant stopped growing at a lower final cell density than the wild-type strain. In tomato juice, additionally, the minimal pH at which the mutant could grow (pH4.20-4.30) was increased compared to that of the wild-type (pH4.10). Growth of the wild-type strain was often accompanied by a pH increase, in contrast to the budAB::cat mutant, where the opposite was observed. However, the differences in growth between the wild-type and budAB::cat mutant could not only be explained by external pH, suggesting that the 2,3-butanediol fermentation contributed to intracellular pH homeostasis. Based on these data, we propose the contribution to growth at low pH as a novel biological function of 2,3-butanediol fermentation in Enterobacteriaceae.


Asunto(s)
Butileno Glicoles/farmacología , Microbiología de Alimentos , Serratia/efectos de los fármacos , Serratia/crecimiento & desarrollo , Ácidos/farmacología , Animales , Concentración de Iones de Hidrógeno , Solanum lycopersicum/microbiología , Viabilidad Microbiana/efectos de los fármacos , Mutación , Serratia/genética , Serratia/metabolismo
6.
Int J Food Microbiol ; 152(3): 162-7, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-21421274

RESUMEN

Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this resulted in up to 3.5 and 2.0 log inactivation for A. acidoterrestris and B. coagulans respectively. We conclude that HP treatment can induce germination and inactivation of spores from thermoacidophilic bacteria in acidic foods, and may thus be useful to reduce spoilage of such foods caused by these bacteria.


Asunto(s)
Alicyclobacillus/crecimiento & desarrollo , Bacillus/crecimiento & desarrollo , Microbiología de Alimentos , Solanum lycopersicum/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Tampones (Química) , Calor , Concentración de Iones de Hidrógeno , Presión Hidrostática , Viabilidad Microbiana , Temperatura
7.
Appl Environ Microbiol ; 77(10): 3422-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21441339

RESUMEN

During fermentation of sugars, a number of bacterial species are able to switch from mixed acid production to acetoin and 2,3-butanediol production in order to avoid lethal acidification of their environment, although the regulation of this switch is only poorly understood. In this study, we report the identification of the budAB structural operon, involved in acetoin production in Serratia plymuthica RVH1, and its activation by a LysR-type regulator encoded by budR, immediately upstream of this operon. In addition, the regulation of budR transcription was elucidated and found to be subject to negative control by BudR itself and to positive control by external stimuli such as N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) quorum sensing signaling molecules and acetate. Interestingly, however, we observed that induction of budR transcription by OHHL or acetate did not require BudR, indicating the involvement of additional regulatory factors in relaying these environmental signals to the budR promoter.


Asunto(s)
Acetoína/metabolismo , Percepción de Quorum , Serratia/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Acetatos/metabolismo , Butileno Glicoles , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/química , ADN Bacteriano/genética , Fermentación , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Operón , Análisis de Secuencia de ADN , Serratia/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...