Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Discov Today ; 29(8): 104059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871112

RESUMEN

Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Isoxazoles , Humanos , Neoplasias Hematológicas/tratamiento farmacológico , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Terapia Molecular Dirigida
2.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38590144

RESUMEN

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Asunto(s)
Antineoplásicos , Cisplatino , Resistencia a Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Espermina/farmacología , Espermina/metabolismo , Paladio/química , Paladio/farmacología
3.
Cancer Cell Int ; 23(1): 310, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057765

RESUMEN

This work compared the metabolic profile of a parental MDA-MB-231 cisplatin-sensitive triple negative breast cancer (TNBC) cell line with that of a derived cisplatin-resistant line, to characterize inherent metabolic adaptations to resistance, as a means for marker and new TNBC therapies discovery. Supported by cytotoxic, microscopic and biochemical characterization of both lines, Nuclear Magnetic Resonance (NMR) metabolomics was employed to characterize cell polar extracts for the two cell lines, as a function of time (0, 24 and 48 h), and identify statistically relevant differences both between sensitive and resistant cells and their time course behavior. Biochemical results revealed a slight increase in activation of the NF-κB pathway and a marked decrease of the ERK signaling pathway in resistant cells. This was accompanied by lower glycolytic and glutaminolytic activities, possibly linked to glutamine being required to increase stemness capacity and, hence, higher survival to cisplatin. The TCA cycle dynamics seemed to be time-dependent, with an apparent activation at 48 h preferentially supported by anaplerotic aromatic amino acids, leucine and lysine. A distinct behavior of leucine, compared to the other branched-chain-amino-acids, suggested the importance of the recognized relationship between leucine and in mTOR-mediated autophagy to increase resistance. Suggested markers of MDA-MB-231 TNBC cisplatin-resistance included higher phosphocreatine/creatine ratios, hypotaurine/taurine-mediated antioxidant protective mechanisms, a generalized marked depletion in nucleotides/nucleosides, and a distinctive pattern of choline compounds. Although the putative hypotheses generated here require biological demonstration, they pave the way to the use of metabolites as markers of cisplatin-resistance in TNBC and as guidance to develop therapies.

4.
Pharmaceutics ; 15(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111690

RESUMEN

Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer and constitutes 10-20% of all breast cancer cases. Even though platinum-based drugs such as cisplatin and carboplatin are effective in TNBC patients, their toxicity and development of cancer drug resistance often hamper their clinical use. Hence, novel drug entities with improved tolerability and selectivity profiles, as well as the ability to surpass resistance, are needed. The current study focuses on Pd(II) and Pt(II) trinuclear chelates with spermidine (Pd3Spd2 and Pt3Spd2) for evaluating their antineoplastic activity having been assessed towards (i) cisplatin-resistant TNBC cells (MDA-MB-231/R), (ii) cisplatin-sensitive TNBC cells (MDA-MB-231) and (iii) non-cancerous human breast cells (MCF-12A, to assess the cancer selectivity/selectivity index). Additionally, the complexes' ability to overcome acquired resistance (resistance index) was determined. This study revealed that Pd3Spd2 activity greatly exceeds that displayed by its Pt analog. In addition, Pd3Spd2 evidenced a similar antiproliferative activity in both sensitive and resistant TNBC cells (IC50 values 4.65-8.99 µM and 9.24-13.34 µM, respectively), with a resistance index lower than 2.3. Moreover, this Pd compound showed a promising selectivity index ratio: >6.28 for MDA-MB-231 cells and >4.59 for MDA-MB-231/R cells. Altogether, the data presently gathered reveal Pd3Spd2 as a new, promising metal-based anticancer agent, which should be further explored for the treatment of TNBC and its cisplatin-resistant forms.

5.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36430252

RESUMEN

Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.


Asunto(s)
Metabolómica , Espermina , Animales , Ratones , Encéfalo , Hígado , Cisplatino/farmacología , Espectroscopía de Resonancia Magnética
6.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36297345

RESUMEN

Corema (C.) album belongs to the family Ericaceae and can be found in the Iberian Peninsula, especially on the coastal areas facing the Atlantic coast. C. album berries have been used for centuries in traditional medicine. Recent studies have revealed that not only the berries but also the leaves have relevant antioxidant, antiproliferative, and anti-inflammatory properties, bringing this plant to the forefront of discussion. A systematic review of the literature was carried out to summarize the phenolic compounds and bioactive properties identified in C. album berries and leaves and to search for research gaps on this topic. The search was conducted in three electronic databases (PubMed, SCOPUS, and Web of Science) using PRISMA methodology. The inclusion criteria were the chemical compositions of the berries, leaves, or their extracts and their bioactive properties. The exclusion criteria were agronomic and archaeological research. The number of studies concerning phenolic compounds' composition and the bioactive properties of C. album berries and leaves is still limited (11 articles). However, the variety of polyphenolic compounds identified make it possible to infer new insights into their putative mechanism of action towards the suppression of NF-kB transcription factor activation, the modulation of inflammatory mediators/enzymes, the induction of apoptosis, the modulation of mitogen activated protein kinase, cell cycle arrest, and the reduction of oxidative stress. These factors can be of major relevance concerning the future use of C. album as nutraceuticals, food supplements, or medicines. Nevertheless, more scientific evidence concerning C. album's bioactivity is required.

7.
Curr Issues Mol Biol ; 44(8): 3598-3610, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36005142

RESUMEN

Corema (C.) album is a shrub endemic to the Atlantic coast and has been described as yielding beneficial effects for human health. Nevertheless, studies concerning the bioactivity of C. album leaves are scarce. This study aims at investigating the anticancer potential and mode of action, of an hydroethanolic extract of C. album leaves (ECAL) on triple-negative breast cancer. This is a poor survival breast cancer subtype, owing to its high risk of distant reappearance, metastasis rates and the probability of relapse. The ECAL ability to prevent tumor progression through (i) the inhibition of cell proliferation (cell viability); (ii) the induction of apoptosis (morphological changes, TUNEL assay, caspase-3 cleaved) and (iii) the induction of DNA damage (PARP1 and γH2AX) with (iv) the involvement of NF-κB and of ERK1/2 pathways (AlphaScreen assay) was evaluated. ECAL activated the apoptotic pathway (through caspase-3) along with the inhibition of ERK and NF-κB pathways causing DNA damage and cell death. The large polyphenolic content of ECAL was presumed to be accountable for these effects. The extract of C. album leaves can target multiple pathways and, thus, can block more than one possible means of disease progression, evidencing the anticancer therapeutic potential from a plant source.

8.
Pharmaceutics ; 14(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35213994

RESUMEN

The new palladium agent Pd2Spermine (Spm) has been reported to exhibit promising cytotoxic properties, while potentially circumventing the known disadvantages associated to cisplatin therapeutics, namely acquired resistance and high toxicity. This work presents a nuclear magnetic resonance (NMR) metabolomics study of brain extracts obtained from healthy mice, to assess the metabolic impacts of the new Pd2Spm complex in comparison to that of cisplatin. The proton NMR spectra of both polar and nonpolar brain extracts were analyzed by multivariate and univariate statistics, unveiling several metabolite variations during the time course of exposition to each drug (1-48 h). The distinct time-course dependence of such changes revealed useful information on the drug-induced dynamics of metabolic disturbances and recovery periods, namely regarding amino acids, nucleotides, fatty acids, and membrane precursors and phospholipids. Putative biochemical explanations were proposed, based on existing pharmacokinetics data and previously reported metabolic responses elicited by the same metal complexes in the liver of the same animals. Generally, results suggest a more effective response of brain metabolism towards the possible detrimental effects of Pd2Spm, with more rapid recovery back to metabolites' control levels and, thus, indicating that the palladium drug may exert a more beneficial role than cDDP in relation to brain toxicity.

9.
Biomedicines ; 10(2)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35203420

RESUMEN

Pd2Spm is a dinuclear palladium(II)-spermine chelate with promising anticancer properties against triple-negative breast cancer (TNBC), a breast carcinoma subset with poor prognosis and limited treatment options. The present study evaluated the in vitro and in vivo anticancer effects of Pd2Spm compared to the reference metal-based drug cisplatin. Triple-negative breast cancer MDA-MB-231 cells, non-cancerous MCF-12A breast cells and chorioallantoic membrane (CAM) assay were used for antiproliferative, antimigratory and antiangiogenic studies. For an in vivo efficacy study, female CBA nude mice with subcutaneously implanted MDA-MB-231 breast tumors were treated with Pd2Spm (5 mg/kg/day) or cisplatin (2 mg/kg/day) administered intraperitoneally during 5 consecutive days. Promising selective antiproliferative activity of Pd2Spm was observed in MDA-MB-231 cells (IC50 values of 7.3-8.3 µM), with at least 10-fold lower activity in MCF-12A cells (IC50 values of 89.5-228.9 µM). Pd2Spm inhibited the migration of MDA-MB-231 cells, suppressed angiogenesis in CAM and decreased VEGF secretion from MDA-MB-231 cells with similar potency as cisplatin. Pd2Spm-treated mice showed a significant reduction in tumor growth progression, and tumors evidenced a reduction in the Ki-67 proliferation index and number of mitotic figures, as well as increased DNA damage, similar to cisplatin-treated animals. Encouragingly, systemic toxicity (hematotoxicity and weight loss) observed in cisplatin-treated animals was not observed in Pd2Spm-treated mice. The present study reports, for the first time, promising cancer selectivity, in vivo antitumor activity towards TNBC and a low systemic toxicity of Pd2Spm. Thus, this agent may be viewed as a promising Pd(II) drug candidate for the treatment of this type of low-prognosis neoplasia.

10.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639114

RESUMEN

The interest in palladium(II) compounds as potential new anticancer drugs has increased in recent years, due to their high toxicity and acquired resistance to platinum(II)-derived agents, namely cisplatin. In fact, palladium complexes with biogenic polyamines (e.g., spermine, Pd2Spm) have been known to display favorable antineoplastic properties against distinct human breast cancer cell lines. This study describes the in vivo response of triple-negative breast cancer (TNBC) tumors to the Pd2Spm complex or to cisplatin (reference drug), compared to tumors in vehicle-treated mice. Both polar and lipophilic extracts of tumors, excised from a MDA-MB-231 cell-derived xenograft mouse model, were characterized through nuclear magnetic resonance (NMR) metabolomics. Interestingly, the results show that polar and lipophilic metabolomes clearly exhibit distinct responses for each drug, with polar metabolites showing a stronger impact of the Pd(II)-complex compared to cisplatin, whereas neither drug was observed to significantly affect tumor lipophilic metabolism. Compared to cisplatin, exposure to Pd2Spm triggered a higher number of, and more marked, variations in some amino acids, nucleotides and derivatives, membrane precursors (choline and phosphoethanolamine), dimethylamine, fumarate and guanidine acetate, a signature that may be relatable to the cytotoxicity and/or mechanism of action of the palladium complex. Putative explanatory biochemical hypotheses are advanced on the role of the new Pd2Spm complex in TNBC metabolism.


Asunto(s)
Antineoplásicos/farmacología , Metaboloma/efectos de los fármacos , Paladio/química , Espermina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Cisplatino/farmacología , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA