Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638879

RESUMEN

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Neoplasias del Colon , Dioxanos/farmacología , Glicoesfingolípidos , Pirrolidinas/farmacología , Esferoides Celulares , Animales , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/biosíntesis , Glicoesfingolípidos/genética , Células HCT116 , Humanos , Ratones , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
2.
Glycobiology ; 30(9): 722-734, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32149357

RESUMEN

In pancreatic beta cells, the entry of glucose and downstream signaling for insulin release is regulated by the glucose transporter 2 (Glut2) in rodents. Dysfunction of the insulin-signaling cascade may lead to diabetes mellitus. Gangliosides, sialic acid-containing glycosphingolipids (GSLs), have been reported to modulate the function of several membrane proteins.Murine islets express predominantly sialylated GSLs, particularly the simple gangliosides GM3 and GD3 having a potential modulatory role in Glut2 activity. Conditional, tamoxifen-inducible gene targeting in pancreatic islets has now shown that mice lacking the glucosylceramide synthase (Ugcg), which represents the rate-limiting enzyme in GSL biosynthesis, displayed impaired glucose uptake and showed reduced insulin secretion. Consequently, mice with pancreatic GSL deficiency had higher blood glucose levels than respective controls after intraperitoneal glucose application. High-fat diet feeding enhanced this effect. GSL-deficient islets did not show apoptosis or ER stress and displayed a normal ultrastructure. Their insulin content, size and number were similar as in control islets. Isolated beta cells from GM3 synthase null mice unable to synthesize GM3 and GD3 also showed lower glucose uptake than respective control cells, corroborating the results obtained from the cell-specific model. We conclude that in particular the negatively charged gangliosides GM3 and GD3 of beta cells positively influence Glut2 function to adequately respond to high glucose loads.


Asunto(s)
Gangliósidos/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Oncotarget ; 8(65): 109201-109216, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29312601

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most frequent cancers. In vitro studies suggest that growth and response to therapy of human carcinomas may depend on glycosphingolipid (GSL) expression. Glucosylceramide synthase (GCS), encoded by the gene Ugcg, is the basic enzyme required for the synthesis of GSLs. Gene array analysis implied that Ugcg is significantly overexpressed in human HCC as compared to non-tumorous liver tissue. Therefore we have investigated whether tumor - genesis and - growth is altered in the absence of GSLs. An endogenous liver cancer model has been initiated by application of diethylnitrosamine in mice lacking Ugcg specifically in hepatocytes. We have now shown that hepatocellular tumor initiation and growth in mice is significantly inhibited by hepatic GSL deficiency in vivo. Neither the expression of cell cycle proteins, such as cyclins and pathways such as the MAP-kinase/Erk pathway nor the mTOR/Akt pathway as well as the number of liver infiltrating macrophages and T cells were essentially changed in tumors lacking GSLs. Significantly elevated bi-nucleation of atypical hepatocytes, a feature for impaired cytokinesis, was detected in tumors of mice lacking liver-specific GSLs. A reduction of proliferation and restricted growth of tumor microspheres due to delayed, GSL-dependent cytokinesis, analogous to the histopathologic phenotype in vivo could be demonstrated in vitro. GSL synthesis inhibition may thus constitute a potential therapeutic target for hepatocellular carcinoma.

4.
J Biol Chem ; 287(39): 32598-616, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22851168

RESUMEN

Glycosphingolipids (GSLs) constitute major components of enterocytes and were hypothesized to be potentially important for intestinal epithelial polarization. The enzyme UDP-glucose ceramide glucosyltransferase (Ugcg) catalyzes the initial step of GSL biosynthesis. Newborn and adult mice with enterocyte-specific genetic deletion of the gene Ugcg were generated. In newborn mutants lacking GSLs at day P0, intestinal epithelia were indistinguishable from those in control littermates displaying an intact polarization with regular brush border. However, those mice were not consistently able to absorb nutritional lipids from milk. Between postnatal days 5 and 7, severe defects in intestinal epithelial differentiation occurred accompanied by impaired intestinal uptake of nutrients. Villi of mutant mice became stunted, and enterocytes lacked brush border. The defects observed in mutant mice caused diarrhea, malabsorption, and early death. In this study, we show that GSLs are essential for enterocyte resorptive function but are primarily not for polarization; GSLs are required for intracellular vesicular transport in resorption-active intestine.


Asunto(s)
Polaridad Celular/fisiología , Enterocitos/metabolismo , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/biosíntesis , Absorción Intestinal/fisiología , Animales , Equidae , Eliminación de Gen , Glucosiltransferasas/genética , Glicoesfingolípidos/genética , Cabras , Ratones , Ratones Mutantes , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA