Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 623
Filtrar
1.
Toxicol Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037918

RESUMEN

Brominated flame retardants are used in many household products to reduce flammability, but often leach into the surrounding environment over time. Hexabromocyclododecane (HBCD) is one brominated flame retardant detected in human blood across the world. HBCD exposure can result in neurological problems and altered lipid metabolism, but to date the two remain unlinked. As lipids constitute ∼50% of brain dry weight, lipid metabolism plays a critical role in neuronal function and homeostasis. To determine the effect of HBCD exposure on brain lipid metabolism, young adult male C57BL/6 mice were exposed to 1 mg/kg HBCD every 3 days for 28 days. Major lipid classes were found to change across brain regions, including the membrane glycerolipids phosphatidylcholine and phosphatidylethanolamine, and sphingolipids such as hexosylceramide. In addition, saturated, monounsaturated, and polyunsaturated fatty acids were enriched within brain lipid species. To understand the source of the brain lipidomic alterations, the blood and liver lipidomes and the cecal microbiome were evaluated. The liver and blood demonstrated changes amongst multiple lipid classes, including triacylglycerol suppression, as well as altered esterified fatty acid content. Significant alterations were also detected in the cecal microbiome, with decreases in the Firmicutes to Bacteriodetes ratio, changes in beta diversity, and pathway alterations associated with metabolic pathways and amino acid biosynthesis. These data demonstrate that HBCD can induce lipidomic alterations across brain regions and organs and supports a potential role of the microbiome in these alterations.

2.
Toxicol Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995820

RESUMEN

Brominated Flame Retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of HBCD exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (TBBPA, current use), hexabromocyclododecane (HBCD, phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All three BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 µM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed BFR exposure increased LC3-II conversion and autophagosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared to the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of change in vesicular trafficking.

3.
Blood Adv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885482

RESUMEN

Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the SARS-CoV-2 virus. Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients and provide a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled on a phase I trial to assess the safety of 3rd party, SARS-CoV-2-specific CTLs. Twelve Interventional patients, 6 of whom were immunocompromised, matched the human leukocyte antigen (HLA)-A*02:01 restriction of the CTLs and received a single infusion of one of four escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared to an Observational group of eighteen patients lacking HLA-A*02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab PCR data showed ≥ 88% and >99% viral elimination from baseline in all patients at 4- and 14-days post-infusion. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor beta (TCR) analysis comparing SARS-CoV-2-specific T-cell responses derived from the CTL donor versus recipients showed persistence of donor-derived CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2-3 days after infusion, whereas improvement was more variable in Observational patients. This study shows that SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. (Clinicaltrials.gov #NCT04765449).

6.
Eur J Haematol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711359

RESUMEN

Posttransplant cyclophosphamide (PtCy) has been shown to decrease post-hematopoietic stem cell transplant acute and chronic graft-versus-host disease (GVHD). In this study, PtCy was used in 44 patients along with mycophenolate and tacrolimus with HLA matched (29) and mismatched (15) unrelated donors to determine the impact of graft content on outcome; thus, all patients had flow cytometric analysis of their graft content including the number of B cells, NK cells, and various T cell subsets. Higher γδ T cell dose was associated with the development of acute GVHD (p = .0038). For PtCy, further studies of the cell product along with further graft manipulation, such as selective γδ T cell depletion, could potentially improve outcomes.

9.
Biochemistry ; 63(9): 1194-1205, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38598309

RESUMEN

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.


Asunto(s)
Hordeum , Hordeum/enzimología , Hordeum/genética , Especificidad por Sustrato , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/química , Mutagénesis , beta-Glucanos/metabolismo
10.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38558969

RESUMEN

Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.

11.
Blood ; 143(21): 2201-2216, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447038

RESUMEN

ABSTRACT: Fanconi anemia (FA) is an inherited DNA repair disorder characterized by bone marrow (BM) failure, developmental abnormalities, myelodysplasia, leukemia, and solid tumor predisposition. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), a mainstay treatment, is limited by conditioning regimen-related toxicity and graft-versus-host disease (GVHD). Antibody-drug conjugates (ADCs) targeting hematopoietic stem cells (HSCs) can open marrow niches permitting donor stem cell alloengraftment. Here, we report that single dose anti-mouse CD45-targeted ADC (CD45-ADC) facilitated stable, multilineage chimerism in 3 distinct FA mouse models representing 90% of FA complementation groups. CD45-ADC profoundly depleted host stem cell enriched Lineage-Sca1+cKit+ cells within 48 hours. Fanca-/- recipients of minor-mismatched BM and single dose CD45-ADC had peripheral blood (PB) mean donor chimerism >90%; donor HSCs alloengraftment was verified in secondary recipients. In Fancc-/- and Fancg-/- recipients of fully allogeneic grafts, PB mean donor chimerism was 60% to 80% and 70% to 80%, respectively. The mean percent donor chimerism in BM and spleen mirrored PB results. CD45-ADC-conditioned mice did not have clinical toxicity. A transient <2.5-fold increase in hepatocellular enzymes and mild-to-moderate histopathological changes were seen. Under GVHD allo-HSCT conditions, wild-type and Fanca-/- recipients of CD45-ADC had markedly reduced GVHD lethality compared with lethal irradiation. Moreover, single dose anti-human CD45-ADC given to rhesus macaque nonhuman primates on days -6 or -10 was at least as myeloablative as lethal irradiation. These data suggest that CD45-ADC can potently promote donor alloengraftment and hematopoiesis without significant toxicity or severe GVHD, as seen with lethal irradiation, providing strong support for clinical trial considerations in highly vulnerable patients with FA.


Asunto(s)
Anemia de Fanconi , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Anemia de Fanconi/terapia , Ratones , Enfermedad Injerto contra Huésped/patología , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Blood Adv ; 8(12): 3027-3037, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38522093

RESUMEN

ABSTRACT: Fanconi anemia (FA) is a complex inherited bone marrow failure syndrome characterized by chromosomal instability and defective DNA repair, causing sensitivity to DNA interstrand crosslinking agents. Our understanding of the full adult phenotype of the disease continues to evolve, because most patients with FA died of marrow failure in the first decade of life before more recent advances in allogeneic hematopoietic cell transplantation. Herein, we report a previously undescribed, clinically concerning, progressive neurologic syndrome in patients with FA. Nine nonimmunosuppressed pediatric patients and young adults with FA presented with acute and chronic neurological signs and symptoms associated with distinct neuroradiological findings. Symptoms included, but were not limited to, limb weakness, papilledema, gait abnormalities, headaches, dysphagia, visual changes, and seizures. Brain imaging demonstrated a characteristic radiographic appearance of numerous cerebral and cerebellar lesions with associated calcifications and often a dominant ring-enhancing lesion. Tissue from the dominant brain lesions in 4 patients showed nonspecific atypical glial proliferation, and a small number of polyomavirus-infected microglial cells were identified by immunohistochemistry in 2 patients. Numerous interventions were pursued across this cohort, in general with no improvement. Overall, these patients demonstrated significant progressive neurologic decline. This cohort highlights the importance of recognizing FA neuroinflammatory syndrome, which is distinct from malignancy, and warrants careful ongoing evaluation by clinicians.


Asunto(s)
Encéfalo , Anemia de Fanconi , Enfermedades Neuroinflamatorias , Humanos , Anemia de Fanconi/complicaciones , Anemia de Fanconi/patología , Anemia de Fanconi/diagnóstico , Masculino , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Femenino , Niño , Adolescente , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Adulto Joven , Adulto , Preescolar , Imagen por Resonancia Magnética
13.
Kidney Med ; 6(3): 100775, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435066

RESUMEN

Vaccinating patients receiving dialysis may prevent morbidity and mortality in this vulnerable population. The National Forum of End-Stage Renal Disease Networks (the Forum) published a revised vaccination toolkit in 2021 to update evidence and recommendations on vaccination for patients receiving dialysis. Significant changes in the last 10 years include more data supporting the use of a high-dose influenza vaccine, the introduction of the Heplisav-B vaccine for hepatitis B, and changes in pneumococcal vaccines, including the approval of the PCV15 and PCV20 to replace the PCV13 and PPSV23 vaccines. Additional key items include the introduction of vaccines against severe acute respiratory syndrome coronavirus 2, the virus that causes coronavirus disease 2019 (COVID-19), and a new vaccine to prevent respiratory syncytial virus disease. Historically, influenza and pneumococcal vaccinations were routinely administered by dialysis facilities, and because of possible risks of hematogenous spread of hepatitis B, dialysis providers often have detailed hepatitis B vaccine protocols. In March 2021, COVID-19 vaccines were made available for dialysis facilities to administer, although with the end of the public health emergency, vaccine policies by dialysis facilities against COVID-19 remains uncertain. The respiratory syncytial virus vaccine was authorized in 2023, and how dialysis facilities will approach this vaccine also remains uncertain. This review summarizes the Forum's vaccination toolkit and discusses the role of the dialysis facility in vaccinating patients to reduce the risk of severe infections.

14.
Am J Med Genet A ; 194(7): e63554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38317562

RESUMEN

Patients with Fanconi anemia (FA) are often perceived to have poor growth when general population growth curves are utilized. We hypothesize that FA patients have unique growth and aimed to create FA-specific growth charts. Height and weight data from ages 0 to 20 years were extracted from medical records of patients treated at the Fanconi Anemia Comprehensive Care Clinic at the University of Minnesota. Height, weight, and BMI growth curves were generated and fitted to reference percentiles using the Lambda-Mu-Sigma method. FA-specific percentiles were compared to WHO standards for ages 0-2 and CDC references for ages 2-20. In FA males, the 50th height- and weight-for-age percentiles overlap with the 3rd reference percentile. In FA females, only the 50th height-for-age percentile overlaps with the 3rd reference percentile. For weight, FA females show progressive growth failure between 6 and 24 months followed by stabilization around the 50th percentile. The FA BMI-for-age percentiles show similar patterns to the weight-for-age percentiles but have different timing of onset of adiposity rebound and broader variability in females. Growth in FA patients follows a different trajectory than available normative curves. FA-specific growth charts may be useful to better guide accurate growth expectations, evaluations, and treatment.


Asunto(s)
Estatura , Índice de Masa Corporal , Peso Corporal , Anemia de Fanconi , Gráficos de Crecimiento , Humanos , Femenino , Masculino , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/patología , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatología , Niño , Adolescente , Preescolar , Lactante , Adulto Joven , Recién Nacido
15.
Clin Transl Sci ; 17(1): e13712, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266055

RESUMEN

Whereas traditional oncology clinical trial endpoints remain key for assessing novel treatments, capturing patients' functional status is increasingly recognized as an important aspect for supporting clinical decisions and assessing outcomes in clinical trials. Existing functional status assessments suffer from various limitations, some of which may be addressed by adopting digital health technologies (DHTs) as a means of collecting both objective and self-reported outcomes. In this mini-review, we propose a device-agnostic multi-domain model for oncology capturing functional status, which includes physical activity data, vital signs, sleep variables, and measures related to health-related quality of life enabled by connected digital tools. By using DHTs for all aspects of data collection, our proposed model allows for high-resolution measurement of objective data as patients navigate their daily lives outside of the hospital setting. This is complemented by electronic questionnaires administered at intervals appropriate for each instrument. Preliminary testing and practical considerations to address before adoption are also discussed. Finally, we highlight multi-institutional pre-competitive collaborations as a means of successfully transitioning the proposed digitally enabled data collection model from feasibility studies to interventional trials and care management.


Asunto(s)
Estado Funcional , Calidad de Vida , Humanos , Recolección de Datos , Ejercicio Físico , Oncología Médica
16.
Blood Adv ; 8(4): 899-908, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38191666

RESUMEN

ABSTRACT: Fanconi anemia (FA) is a hereditary, DNA repair deficiency disorder caused by pathogenic variants in any 1 of 22 known genes (FANCA-FANCW). Variants in FANCA account for nearly two-thirds of all patients with FA. Clinical presentation of FA can be heterogeneous and include congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. Here, we describe a relatively mild disease manifestation among 6 individuals diagnosed with FA, each compound heterozygous for 1 established pathogenic FANCA variant and 1 FANCA exon 36 variant, c.3624C>T. These individuals had delayed onset of hematological abnormalities, increased survival, reduced incidence of cancer, and improved fertility. Although predicted to encode a synonymous change (p.Ser1208=), the c.3624C>T variant causes a splicing error resulting in a FANCA transcript missing the last 4 base pairs of exon 36. Deep sequencing and quantitative reverse transcription polymerase chain reaction analysis revealed that 6% to 10% of the FANCA transcripts included the canonical splice product, which generated wild-type FANCA protein. Consistently, functional analysis of cell lines from the studied individuals revealed presence of residual FANCD2 ubiquitination and FANCD2 foci formation, better cell survival, and decreased late S/G2 accumulation in response to DNA interstrand cross-linking agent, indicating presence of residual activity of the FA repair pathway. Thus, the c.3624C>T variant is a hypomorphic allele, which contributes to delayed manifestation of FA disease phenotypes in individuals with at least 1 c.3624C>T allele.


Asunto(s)
Anemia de Fanconi , Neoplasias , Humanos , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Línea Celular , Genotipo
17.
Cancers (Basel) ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958304

RESUMEN

Chemotherapy remains a primary treatment for younger AML patients, though many relapse. Data from our group have shown that highly phosphorylated S6 in blasts may predict response to sirolimus given with chemotherapy. We report the results of a phase I study of this combination in newly diagnosed AML and the pharmacodynamic analysis of pS6 before and after treatment. Subjects received sirolimus (12 mg on day 1, 4 mg daily, days 2-10), then idarubicin and cytarabine (days 4-10). Response was assessed at hematologic recovery or by day 42 using a modified IWG criteria. Fifty-five patients received sirolimus. Toxicity was similar to published 7 + 3 data, and 53% had high-, 27% intermediate-, and 20% favorable-risk disease. Forty-four percent of the high-risk patients entered into CR/CRp. Seventy-nine percent of the intermediate-risk subjects had a CR/CRp. All favorable-risk patients had a CR by day 42; 9/11 remained alive and in remission with a median follow-up of 660 days. Additionally, 41/55 patients had adequate samples for pharmacodynamic analysis. All patients demonstrated activation of S6 prior to therapy, in contrast to 67% seen in previous studies of relapsed AML. mTORC1 inhibition was observed in 66% of patients without enrichment among patients who achieved remission. We conclude that sirolimus and 7 + 3 is a well-tolerated and safe regimen. mTORC1 appears to be activated in almost all patients at diagnosis of AML. Inhibition of mTORC1 did not differ based on response, suggesting that AML cells may have redundant signaling pathways that regulate chemosensitivity in the presence of mTORC1 inhibition.

18.
Clin Transl Sci ; 16(11): 2112-2122, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602889

RESUMEN

Several inefficiencies in drug development trial implementation may be improved by moving data collection from the clinic to mobile, allowing for more frequent measurements and therefore increased statistical power while aligning to a patient-centric approach to trial design. Sensor-based digital health technologies such as mobile spirometry (mSpirometry) are comparable to clinic spirometry for capturing outcomes, such as forced expiratory volume in 1 s (FEV1); however, the impact of remote spirometry measurements on the detection of treatment effect has not been investigated. A protocol for a multicenter, single-arm, open-label interventional trial of long-acting beta agonist (LABA) therapy among 60 participants with uncontrolled moderate asthma is described. Participants will complete twice-daily mSpirometry at home and clinic spirometry during weekly visits, alongside continuous use of a wrist-worn wearable and regular completion of several diaries capturing asthma symptoms as well as participant- and site-reported satisfaction and ease of use of mSpirometry. The co-primary objectives of this study are (A) to quantify the treatment effect of LABA therapy among participants with moderate asthma, using both clinical spirometry (FEV1c ) and mSpirometry (FEV1m ); and (B) to investigate whether FEV1m is as accurate as FEV1c in detecting the treatment effect using a mixed-effect model for repeated measures. Study results will help inform whether the deployment of mSpirometry and a wrist-worn wearable for remote data collection are feasible in a multicenter setting among participants with moderate asthma, which may then be generalizable to other populations with respiratory disease.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2 , Asma , Humanos , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Asma/diagnóstico , Asma/tratamiento farmacológico , Volumen Espiratorio Forzado , Estudios Multicéntricos como Asunto , Proyectos de Investigación , Espirometría , Ensayos Clínicos como Asunto
19.
Vet Clin North Am Food Anim Pract ; 39(3): 505-516, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455235

RESUMEN

Trace minerals and vitamins are essential for optimizing feedlot cattle growth, health, and carcass characteristics. Understanding factors that influence trace mineral and vitamin absorption and metabolism is important when formulating feedlot cattle diets. Current feedlot industry supplementation practices typically exceed published trace mineral requirements by a factor of 2 to 4. Therefore, the intent of this review is to briefly discuss the functions of trace minerals and vitamins that are typically supplemented in feedlot diets and to examine the impact of dose of trace mineral or vitamin on growth performance, health, and carcass characteristics of feedlot cattle.


Asunto(s)
Oligoelementos , Vitaminas , Bovinos , Animales , Suplementos Dietéticos , Vitamina A , Dieta/veterinaria , Rumiantes/metabolismo , Alimentación Animal/análisis , Minerales/metabolismo
20.
Transplant Cell Ther ; 29(8): 509.e1-509.e8, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37279855

RESUMEN

Treatments that aid inflammation resolution, immune tolerance, and epithelial repair may improve outcomes beyond high-dose corticosteroids and other broad immunosuppressants for life-threatening acute graft-versus-host disease (aGVHD). We studied the addition of urinary-derived human chorionic gonadotropin/epidermal growth factor (uhCG/EGF; Pregnyl; Organon, Jersey City, NJ) to standard aGVHD therapy in a prospective Phase II clinical trial (ClinicalTrials.gov identifier NCT02525029). Twenty-two patients with Minnesota (MN) high-risk aGVHD received methylprednisolone 48 mg/m2/day plus 2000 units/m2 of uhCG/EGF s.c. every other day for 1 week. Patients requiring second-line aGVHD therapy received uhCG/EGF 2000 to 5000 units/m2 s.c. every other day for 2 weeks plus standard of care immunosuppression (physician's choice). Responding patients were eligible to receive maintenance doses twice weekly for 5 weeks. Immune cell subsets in peripheral blood were evaluated by mass cytometry and correlated with plasma amphiregulin (AREG) level and response to therapy. Most patients had stage 3-4 lower gastrointestinal tract GVHD (52%) and overall grade III-IV aGVHD (75%) at time of enrollment. The overall proportion of patients with a response at day 28 (primary endpoint) was 68% (57% with complete response, 11% with partial response). Nonresponders had higher baseline counts of KLRG1+ CD8 cells and T cell subsets expressing TIM-3. Plasma AREG levels remained persistently elevated in nonresponders and correlated with AREG expression on peripheral blood T cells and plasmablasts. The addition of uhCG/EGF to standard therapy is a feasible supportive care measure for patients with life-threatening aGVHD. As a commercially available, safe, and inexpensive drug, uhCG/EGF added to standard therapy may reduce morbidity and mortality from severe aGVHD and merits further study.


Asunto(s)
Factor de Crecimiento Epidérmico , Enfermedad Injerto contra Huésped , Humanos , Factor de Crecimiento Epidérmico/uso terapéutico , Estudios Prospectivos , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Tolerancia Inmunológica , Gonadotropina Coriónica/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...