Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 12(8): 157, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35791411

RESUMEN

The development of Rhizophora mangle and Avicennia schaueriana seedlings impacted by marine diesel oil (MDO) was evaluated in the presence or absence of a hydrocarbon-degrading bacterial consortium (HBC). The bioassays were conducted in a greenhouse during 6 months and consisted of three different treatments (control, MDO only and MDO + HBC). The bacterial consortium was mainly composed of Bacillus spp. (73%), but Rhizobium spp., Pseudomonas spp., Ochrobactrum spp., and Brevundimonas spp. were also present. After 6 months, A. schaueriana seedlings showed higher mortality compared to those of R. mangle; R. mangle exhibited 68% (control), 44% (MDO alone) and 50% (MDO + HBC) seedlings survivorship compared to 42% (control), 0% (MDO alone) and 4% (MDO + HBC) for A. schaueriana. This variability may be due to differences in species physiology. Stem growth, diameter and number of leaves remained constant during the 6 months of the experiment with marine diesel oil and hydrocarbon-degrading bacterial consortium (MDO + BBC). For both mangrove species, bacterial enzymatic activity in the sediments was sufficient to maintain cell counts of 107 cells cm-3 in the rhizospheric soil and possibly synthetize the extracellular polymeric substances (EPS) that may emulsify and solubilize oil products.

2.
Biofilm ; 2: 100034, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33447819

RESUMEN

Microorganisms, such as bacteria, tend to aggregate and grow on surfaces, secreting extracellular polymeric substances (EPS), forming biofilms. Biofilm formation is a life strategy, because through it microorganisms can create their own microhabitats. Whether for remediation of pollutants or application in the biomedical field, several methodological approaches are necessary for a more accurate analysis of the role and potential use of bacterial biofilms. The use of computerized microtomography to monitor biofilm growth appears to be an advantageous tool due to its non-destructive character and its ability to render 2D and 3D visualization of the samples. In this study, we used several techniques such as analysis of microbiological parameters and biopolymer concentrations to corroborate porosity quantified by 2D and 3D imaging. Quantification of the porosity of samples by microtomography was verified by increased enzymatic activity and, consequently, higher EPS biopolymer synthesis to form biofilm, indicating growth of the biofilm over 96 â€‹h. Our interdisciplinary approach provides a better understanding of biofilm growth, enabling integrated use of these techniques as an important tool in bioremediation studies of environments impacted by pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...