Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Ind Microbiol Biotechnol ; 45(5): 305-311, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29605870

RESUMEN

Utilization of renewable feedstocks for the production of bio-based bulk chemicals, such as 2,3-butanediol (2,3-BDO), by engineered strains of the non-pathogenic yeast, Saccharomyces cerevisiae, has recently become an attractive option. In this study, to realize rapid production of 2,3-BDO, a flocculent, 2,3-BDO-producing S. cerevisiae strain YPH499/dPdAdG/BDN6-10/FLO1 was constructed from a previously developed 2,3-BDO-producing strain. Continuous 2,3-BDO fermentation was carried out by the flocculent strain in an airlift bioreactor. The strain consumed more than 90 g/L of glucose, which corresponded to 90% of the input, and stably produced more than 30 g/L of 2,3-BDO over 380 h. The maximum 2,3-BDO productivity was 7.64 g/L/h at a dilution rate of 0.200/h, which was higher than the values achieved by continuous fermentation using pathogenic bacteria in the previous reports. These results demonstrate that continuous 2,3-BDO fermentation with flocculent 2,3-BDO-producing S. cerevisiae is a promising strategy for practical 2,3-BDO production.


Asunto(s)
Reactores Biológicos , Butileno Glicoles/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Fermentación , Glucosa/metabolismo , Lectinas de Unión a Manosa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Metabolismo Secundario
2.
Bioresour Technol ; 245(Pt B): 1558-1566, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28522198

RESUMEN

In this study, the expression of 4 genes encoding α-acetolactate synthase, α-acetolactate decarboxylase, 2,3-butanediol dehydrogenase, and NADH oxidase was modulated using a previously developed cocktail δ-integration strategy. The resultant strain, YPH499/dPdAdG/BD6-10, was used in a fed-batch cultivation for the production of 2,3-butanediol. The concentration, production rate, and yield obtained were 80.0g/L, 4.00g/L/h, and 41.7%, respectively. The production rate and yield of the compound obtained are higher for this strain compared to reports published for Saccharomyces cerevisiae so far. The cocktail δ-integration strategy allows for modulation of multiple gene expression, without the exact knowledge of rate-limiting steps, and therefore, could be used as a promising strategy for the production of bio-based chemicals in recombinant S. cerevisiae.


Asunto(s)
Butileno Glicoles , Ingeniería Metabólica , Saccharomyces cerevisiae , Carboxiliasas , Fermentación
3.
Biotechnol Bioeng ; 114(9): 2075-2084, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28475210

RESUMEN

Utilization of renewable feedstocks for the production of bio-based chemicals such as d-lactic acid by engineering metabolic pathways in the yeast Saccharomyces cerevisiae has recently become an attractive option. In this study, to realize efficient d-lactic acid production by S. cerevisiae, the expression of 12 glycolysis-related genes and the Leuconostoc mesenteroides d-LDH gene was optimized using a previously developed global metabolic engineering strategy, and repeated batch fermentation was carried out using the resultant strain YPH499/dPdA3-34/DLDH/1-18. Stable d-lactic acid production through 10 repeated batch fermentations was achieved using YPH499/dPdA3-34/DLDH/1-18. The average d-lactic acid production, productivity, and yield with 10 repeated batch fermentations were 60.3 g/L, 2.80 g/L/h, and 0.646, respectively. The present study is the first report of the application of a global metabolic engineering strategy for bio-based chemical production, and it shows the potential for efficient production of such chemicals by global metabolic engineering of the yeast S. cerevisiae. Biotechnol. Bioeng. 2017;114: 2075-2084. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Mejoramiento Genético/métodos , Glucosa/metabolismo , L-Lactato Deshidrogenasa/genética , Ácido Láctico/biosíntesis , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/fisiología , Saccharomyces cerevisiae/fisiología , Regulación Fúngica de la Expresión Génica/genética , Glucólisis/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología
4.
ACS Synth Biol ; 6(4): 659-666, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28080037

RESUMEN

The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Alcohol Deshidrogenasa/deficiencia , Alcohol Deshidrogenasa/genética , Dosificación de Gen , Glucosa/metabolismo , Glucólisis/genética , Hexoquinasa/genética , Hexoquinasa/metabolismo , Redes y Vías Metabólicas , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Piruvato Descarboxilasa/deficiencia , Piruvato Descarboxilasa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA