Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149307

RESUMEN

Intervertebral disc (IVD) degeneration contributes to disabling back pain. Degeneration can be initiated by injury and progressively leads to irreversible cell loss and loss of IVD function. Attempts to restore IVD function through cell replacement therapies have had limited success due to knowledge gaps in critical cell populations and molecular crosstalk after injury. Here, we used single cell RNA sequencing to identify the transcriptional changes of endogenous and infiltrating IVD cell populations, as well as the potential of resident mesenchymal stem cells (MSCs) for tissue repair. Control and Injured (needle puncture) tail IVDs were extracted from 12 week old female C57BL/6 mice 7 days post injury and clustering analyses, gene ontology, and pseudotime trajectory analyses were used to determine transcriptomic divergences in the cells of the injured IVD, while immunofluorescence was utilized to determine mesenchymal stem cell (MSC) localization. Clustering analysis revealed 11 distinct cell populations that were IVD tissue specific, immune, or vascular cells. Differential gene expression analysis determined that Outer Annulus Fibrosus, Neutrophils, Saa2-High MSCs, Macrophages, and Krt18+ Nucleus Pulposus (NP) cells were the major drivers of transcriptomic differences between Control and Injured cells. Gene ontology of DEGs suggested that the most upregulated biological pathways were angiogenesis and T cell related while wound healing and ECM regulation categories were downregulated. Pseudotime trajectory analyses revealed that cells were driven towards increased cell differentiation due to IVD injury in all IVD tissue clusters except for Krt18+ NP which remained in a less mature cell state. Saa2-High and Grem1-High MSCs populations drifted towards more IVD differentiated cells profiles with injury and localized distinctly within the IVD. This study strengthens the understanding of heterogeneous IVD cell populations response to injury and identifies targetable MSC populations for future IVD repair studies.

2.
bioRxiv ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464124

RESUMEN

Inadequate repair of injured intervertebral discs (IVD) leads to degeneration and contributes to low back pain. Infiltrating immune cells into damaged musculoskeletal tissues are critical mediators of repair, yet little is known about their identities, roles, and temporal regulation following IVD injury. By analyzing longitudinal changes in gene expression, tissue morphology, and the dynamics of infiltrating immune cells following injury, we characterize sex-specific differences in immune cell populations and identify the involvement of previously unreported immune cell types, γδ and NKT cells. Cd3+Cd4-Cd8- T cells are the largest infiltrating lymphocyte population with injury, and we identified the presence of γδ T cells in this population in female mice specifically, and NKT cells in males. Injury-mediated IVD degeneration was prevalent in both sexes, but more severe in males. Sex-specific degeneration may be associated with the differential immune response since γδ T cells have potent anti-inflammatory roles and may mediate IVD repair.

3.
Sci Rep ; 12(1): 15555, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114343

RESUMEN

A targeted injury to the mouse intervertebral disc (IVD) is often used to recapitulate the degenerative cascade of the human pathology. Since injuries can vary in magnitude and localization, it is critical to examine the effects of different injuries on IVD degeneration. We thus evaluated the degenerative progression resulting from either a partial- or full-width injury to the mouse lumbar IVD using contrast-enhanced micro-computed tomography and histological analyses. A lateral-retroperitoneal surgical approach was used to access the lumbar IVD, and the injuries to the IVD were produced by either incising one side of the annulus fibrosus or puncturing both sides of the annulus fibrosus. Female C57BL/6J mice of 3-4 months age were used in this study. They were divided into three groups to undergo partial-width, full-width, or sham injuries. The L5/6 and L6/S1 lumbar IVDs were surgically exposed, and then the L6/S1 IVDs were injured using either a surgical scalpel (partial-width) or a 33G needle (full-width), with the L5/6 serving as an internal control. These animals recovered and then euthanized at either 2-, 4-, or 8-weeks after surgery for evaluation. The IVDs were assessed for degeneration using contrast-enhanced microCT (CEµCT) and histological analysis. The high-resolution 3D CEµCT evaluation of the IVD confirmed that the respective injuries were localized within one side of the annulus fibrosus or spanned the full width of the IVD. The full-width injury caused significant deteriorations in the nucleus pulposus, annulus fibrous and at the interfaces after 2 weeks, which was sustained through the 8 weeks, while the partial width injury caused localized disruptions that remained limited to the annulus fibrosus. The use of CEµCT revealed distinct IVD degeneration profiles resulting from partial- and full-width injuries. The partial width injury may serve as an alternative model for IVD degeneration resulting from localized annulus fibrosus injuries.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Anillo Fibroso/diagnóstico por imagen , Anillo Fibroso/patología , Femenino , Humanos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/diagnóstico por imagen , Degeneración del Disco Intervertebral/patología , Ratones , Ratones Endogámicos C57BL , Punción Espinal , Microtomografía por Rayos X
4.
JOR Spine ; 5(1): e1191, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35386755

RESUMEN

Introduction: Diabetes has long been implicated as a major risk factor for intervertebral disc (IVD) degeneration, interfering with molecular signaling and matrix biochemistry, which ultimately aggravates the progression of the disease. Glucose content has been previously shown to influence structural and compositional changes in engineered discs in vitro, impeding fiber formation and mechanical stability. Methods: In this study, we investigated the impact of diabetic hyperglycemia on young IVDs by assessing biochemical composition, collagen fiber architecture, and mechanical behavior of discs harvested from 3- to 4-month-old db/db mouse caudal spines. Results: We found that discs taken from diabetic mice with elevated blood glucose levels demonstrated an increase in total glycosaminoglycan and collagen content, but comparable advanced glycation end products (AGE) levels to wild-type discs. Diabetic discs also contained ill-defined boundaries between the nucleus pulposus and annulus fibrosus, with the latter showing a disorganized and unaligned collagen fiber network at this same boundary. Conclusions: These compositional and structural changes had a detrimental effect on function, as the diabetic discs were twice as stiff as their wild-type counterparts and demonstrated a significant resistance to deformation. These results indicate that diabetes may predispose the young disc to DDD later in life by altering patterns of extracellular matrix deposition, fiber formation, and motion segment mechanics independently of AGE accumulation.

5.
Sci Rep ; 11(1): 24147, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921194

RESUMEN

Diabetes is associated with impaired tendon homeostasis and subsequent tendon dysfunction, but the mechanisms underlying these associations is unclear. Advanced glycation end-products (AGEs) accumulate with diabetes and have been suggested to alter tendon function. In vivo imaging in humans has suggested collagen disorganization is more frequent in individuals with diabetes, which could also impair tendon mechanical function. The purpose of this study was to examine relationships between tendon tensile mechanics in human Achilles tendon with accumulation of advanced glycation end-products and collagen disorganization. Achilles tendon specimens (n = 16) were collected from individuals undergoing lower extremity amputation or from autopsy. Tendons were tensile tested with simultaneous quantitative polarized light imaging to assess collagen organization, after which AGEs content was assessed using a fluorescence assay. Moderate to strong relationships were observed between measures of collagen organization and tendon tensile mechanics (range of correlation coefficients: 0.570-0.727), whereas no statistically significant relationships were observed between AGEs content and mechanical parameters (range of correlation coefficients: 0.020-0.210). Results suggest that the relationship between AGEs content and tendon tensile mechanics may be masked by multifactorial collagen disorganization at larger length scales (i.e., the fascicle level).


Asunto(s)
Tendón Calcáneo/metabolismo , Colágeno/metabolismo , Diabetes Mellitus/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Estrés Mecánico , Tendón Calcáneo/patología , Tendón Calcáneo/fisiopatología , Diabetes Mellitus/patología , Diabetes Mellitus/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Artículo en Inglés | MEDLINE | ID: mdl-35992525

RESUMEN

Type 2 diabetes mellitus (T2D) is an increasingly prevalent disease with numerous comorbidities including many in the spine. T2D is strongly linked with vertebral fractures, intervertebral disc (IVD) degeneration, and severe chronic spinal pain. Yet the causative mechanism for these musculoskeletal impairments remains unclear. The chronic hyperglycemic state in T2D promotes the formation of advanced glycation end-products (AGEs) in tissues, and the accumulation of AGEs may play a role in musculoskeletal complications by modifying the extracellular matrix, impairing cellular homeostasis, and perpetuating an inflammatory cascade via its receptor (RAGE). The AGE and RAGE associated alterations in extracellular matrix composition and morphological features of the vertebral bodies and IVDs are likely contributors to the incidence and severity of spinal pathologies in T2D. This review will broadly examine the effects of AGEs on tissues in the spine in the context of T2D, with an emphasis on the changes in the vertebrae and the IVD. Along with the clinical and epidemiological findings, we will provide an overview of preclinical rodent models of T2D that exhibit deficits in the IVD and vertebral bone. Elucidating the role of AGEs and RAGE will be crucial for understanding the disease mechanisms and translation therapies of musculoskeletal pathologies in T2D.

7.
JOR Spine ; 2(2): e1058, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31463468

RESUMEN

Mouse models are often used for studies of intervertebral disc (IVD) homeostasis and degeneration, yet the relatively small size of the IVD poses challenges for noninvasive, longitudinal imaging modalities. The recently developed contrast-enhanced microCT (CEµCT) using Ioversol has been successful in detecting degenerative changes in the murine IVD ex vivo at the micrometer scale. Further leveraging the superior biocompatibility of Ioversol as a contrast agent, we demonstrate the in vivo use of this CEµCT technique to examine IVDs at multiple spinal sites. Ioversol was administered via tail vein injection (TVI) in growing and adult male FVB/NJ mice (n = 5 /group). The animals were anesthetized and underwent in vivo micro-computed tomographic (microCT) at the coccygeal (CC5/CC6), lumbar (L5/6), and thoracic (T12/T13) IVDs. TVI of Ioversol was well-tolerated by all animals. As Ioversol filtered through the kidneys and accumulated in the bladder, the attenuations of the mouse bladder and kidneys increased due to the high molecular weight of Ioversol, confirming that the Ioversol is biological available. Average IVD attenuations increased 3%-15% following TVI (ANOVA; P < .01). The presence of Ioversol in the IVD combined with high-resolution microCT allow for nondestructive visualization of structural features of the IVD. These results demonstrate CEµCT with Ioversol as a viable strategy for the in vivo monitoring of multiple mouse IVDs during degeneration, disease, and injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA