Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Haematologica ; 108(10): 2715-2729, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37102608

RESUMEN

Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.


Asunto(s)
Síndromes Mielodisplásicos , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Deleción Cromosómica , Síndromes Mielodisplásicos/patología , Células Madre Hematopoyéticas/metabolismo , Transducción de Señal , Cromosomas Humanos Par 5/genética , Cromosomas Humanos Par 5/metabolismo
2.
Oncogene ; 41(32): 3969-3977, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35768547

RESUMEN

HORMAD1 expression is usually restricted to germline cells, but it becomes mis-expressed in epithelial cells in ~60% of triple-negative breast cancers (TNBCs), where it is associated with elevated genomic instability (1). HORMAD1 expression in TNBC is bimodal with HORMAD1-positive TNBC representing a biologically distinct disease group. Identification of HORMAD1-driven genetic dependencies may uncover novel therapies for this disease group. To study HORMAD1-driven genetic dependencies, we generated a SUM159 cell line model with doxycycline-inducible HORMAD1 that replicated genomic instability phenotypes seen in HORMAD1-positive TNBC (1). Using small interfering RNA screens, we identified candidate genes whose depletion selectively inhibited the cellular growth of HORMAD1-expressing cells. We validated five genes (ATR, BRIP1, POLH, TDP1 and XRCC1), depletion of which led to reduced cellular growth or clonogenic survival in cells expressing HORMAD1. In addition to the translesion synthesis (TLS) polymerase POLH, we identified a HORMAD1-driven dependency upon additional TLS polymerases, namely POLK, REV1, REV3L and REV7. Our data confirms that out-of-context somatic expression of HORMAD1 can lead to genomic instability and reveals that HORMAD1 expression induces dependencies upon replication stress tolerance pathways, such as translesion synthesis. Our data also suggest that HORMAD1 expression could be a patient selection biomarker for agents targeting replication stress.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica/genética , Humanos , Nucleotidiltransferasas/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
3.
Cell Stem Cell ; 29(2): 298-314.e9, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045331

RESUMEN

Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of pre-leukemic cells that acquire specific mutations. Although individuals with CH are healthy, they are at an increased risk of developing myeloid malignancies, suggesting that additional alterations are needed for the transition from a pre-leukemia stage to frank leukemia. To identify signaling states that cooperate with pre-leukemic cells, we used an in vivo RNAi screening approach. One of the most prominent genes identified was the ubiquitin ligase TRAF6. Loss of TRAF6 in pre-leukemic cells results in overt myeloid leukemia and is associated with MYC-dependent stem cell signatures. TRAF6 is repressed in a subset of patients with myeloid malignancies, suggesting that subversion of TRAF6 signaling can lead to acute leukemia. Mechanistically, TRAF6 ubiquitinates MYC, an event that does not affect its protein stability but rather represses its functional activity by antagonizing an acetylation modification.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/patología , Mutación , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
4.
Commun Biol ; 4(1): 1270, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750509

RESUMEN

PARP enzymes utilise NAD+ as a co-substrate for their enzymatic activity. Inhibition of PARP1 is synthetic lethal with defects in either BRCA1 or BRCA2. In order to assess whether other genes implicated in NAD+ metabolism were synthetic lethal with BRCA1 or BRCA2 gene defects, we carried out a genetic screen, which identified a synthetic lethality between BRCA1 and genetic inhibition of either of two sirtuin (SIRT) enzymes, SIRT1 or SIRT6. This synthetic lethal interaction was replicated using small-molecule SIRT inhibitors and was associated with replication stress and increased cellular PARylation, in contrast to the decreased PARylation associated with BRCA-gene/PARP inhibitor synthetic lethality. SIRT/BRCA1 synthetic lethality was reversed by genetic ablation of either PARP1 or the histone PARylation factor-coding gene HPF1, implicating PARP1/HPF1-mediated serine ADP-ribosylation as part of the mechanistic basis of this synthetic lethal effect. These observations suggest that PARP1/HPF1-mediated serine ADP-ribosylation, when driven by SIRT inhibition, can inadvertently inhibit the growth of BRCA-gene mutant cells.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Sirtuinas/metabolismo , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
5.
Nat Immunol ; 21(5): 535-545, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32313245

RESUMEN

Despite evidence of chronic inflammation in myelodysplastic syndrome (MDS) and cell-intrinsic dysregulation of Toll-like receptor (TLR) signaling in MDS hematopoietic stem and progenitor cells (HSPCs), the mechanisms responsible for the competitive advantage of MDS HSPCs in an inflammatory milieu over normal HSPCs remain poorly defined. Here, we found that chronic inflammation was a determinant for the competitive advantage of MDS HSPCs and for disease progression. The cell-intrinsic response of MDS HSPCs, which involves signaling through the noncanonical NF-κB pathway, protected these cells from chronic inflammation as compared to normal HSPCs. In response to inflammation, MDS HSPCs switched from canonical to noncanonical NF-κB signaling, a process that was dependent on TLR-TRAF6-mediated activation of A20. The competitive advantage of TLR-TRAF6-primed HSPCs could be restored by deletion of A20 or inhibition of the noncanonical NF-κB pathway. These findings uncover the mechanistic basis for the clonal dominance of MDS HSPCs and indicate that interfering with noncanonical NF-κB signaling could prevent MDS progression.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Inflamación/inmunología , Síndromes Mielodisplásicos/inmunología , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Anciano , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Transgénicos , Mielopoyesis , FN-kappa B/genética , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Receptores Toll-Like/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
6.
Brain ; 141(5): 1247-1262, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29584802

RESUMEN

Maintaining genomic stability constitutes a major challenge facing cells. DNA breaks can arise from direct oxidative damage to the DNA backbone, the inappropriate activities of endogenous enzymes such as DNA topoisomerases, or due to transcriptionally-derived RNA/DNA hybrids (R-loops). The progressive accumulation of DNA breaks has been linked to several neurological disorders. Recently, however, several independent studies have implicated nuclear and mitochondrial genomic instability, perturbed co-transcriptional processing, and impaired cellular clearance pathways as causal and intertwined mechanisms underpinning neurodegeneration. Here, we discuss this emerging paradigm in the context of amyotrophic lateral sclerosis and frontotemporal dementia, and outline how this knowledge paves the way to novel therapeutic interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Autofagia/fisiología , Reparación del ADN/fisiología , Demencia/complicaciones , Degeneración Nerviosa/etiología , Animales , Humanos
7.
Cell Rep ; 22(5): 1250-1262, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29386112

RESUMEN

Basal nuclear factor κB (NF-κB) activation is required for hematopoietic stem cell (HSC) homeostasis in the absence of inflammation; however, the upstream mediators of basal NF-κB signaling are less well understood. Here, we describe TRAF6 as an essential regulator of HSC homeostasis through basal activation of NF-κB. Hematopoietic-specific deletion of Traf6 resulted in impaired HSC self-renewal and fitness. Gene expression, RNA splicing, and molecular analyses of Traf6-deficient hematopoietic stem/progenitor cells (HSPCs) revealed changes in adaptive immune signaling, innate immune signaling, and NF-κB signaling, indicating that signaling via TRAF6 in the absence of cytokine stimulation and/or infection is required for HSC function. In addition, we established that loss of IκB kinase beta (IKKß)-mediated NF-κB activation is responsible for the major hematopoietic defects observed in Traf6-deficient HSPC as deletion of IKKß similarly resulted in impaired HSC self-renewal and fitness. Taken together, TRAF6 is required for HSC homeostasis by maintaining a minimal threshold level of IKKß/NF-κB signaling.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Homeostasis/fisiología , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Activación Enzimática/fisiología , Quinasa I-kappa B/metabolismo , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología
8.
Nat Neurosci ; 20(9): 1225-1235, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28714954

RESUMEN

Hexanucleotide repeat expansions represent the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, though the mechanisms by which such expansions cause neurodegeneration are poorly understood. We report elevated levels of DNA-RNA hybrids (R-loops) and double strand breaks in rat neurons, human cells and C9orf72 ALS patient spinal cord tissues. Accumulation of endogenous DNA damage is concomitant with defective ATM-mediated DNA repair signaling and accumulation of protein-linked DNA breaks. We reveal that defective ATM-mediated DNA repair is a consequence of P62 accumulation, which impairs H2A ubiquitylation and perturbs ATM signaling. Virus-mediated expression of C9orf72-related RNA and dipeptide repeats in the mouse central nervous system increases double strand breaks and ATM defects and triggers neurodegeneration. These findings identify R-loops, double strand breaks and defective ATM-mediated repair as pathological consequences of C9orf72 expansions and suggest that C9orf72-linked neurodegeneration is driven at least partly by genomic instability.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Rotura Cromosómica , Reparación del ADN/fisiología , Expansión de las Repeticiones de ADN/fisiología , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína C9orf72 , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas/metabolismo , Distribución Aleatoria , Ratas , Médula Espinal/metabolismo , Médula Espinal/patología
9.
Dis Model Mech ; 10(7): 859-868, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28550099

RESUMEN

Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches.


Asunto(s)
Conducta Animal , Encéfalo/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Animales , Biomarcadores/metabolismo , Encéfalo/fisiopatología , Región CA1 Hipocampal/patología , Muerte Celular , Núcleo Celular/metabolismo , Cognición , Marcha , Células HEK293 , Humanos , Ratones , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/fisiopatología , Neuronas/metabolismo , Neuronas/patología , ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Regulación hacia Arriba
10.
Curr Pharm Biotechnol ; 17(10): 886-93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26927218

RESUMEN

Statins are potent modulators of immune responses, resulting in their ability to enhance host survival from primary bacterial infections. Alterations in primary immune responses that may be beneficial for survival following infection may also result in alterations in the generation of the immunologic memory response and subsequently affect immune responses mounted during secondary bacterial infection. In this study, we report that levels of total serum IgG2c, following primary infection, were decreased in simvastatin pretreated mice, and investigate the effect of simvastatin treatment, prior to primary infection, on immune responses activated during secondary S. aureus infection. A secondary infection model was implemented whereby simvastatin pretreated and control mice were reinfected with S. aureus 14 days after primary infection, with no additional simvastatin treatment, and assessed for survival and alterations in immune function. While survivability to secondary S. aureus infection was not different between simvastatin pretreated and control mice, memory B and T lymphocyte functions were altered. Memory B cells, isolated 14 days after secondary infection, from simvastatin pretreated mice and stimulated ex vivo produced increased levels of IgG1 compared to memory B cells isolated from control mice, while levels of IgM and IgG2c remained similar. Furthermore, memory B and T lymphocytes from simvastatin pretreated mice exhibited a decreased proliferative response when stimulated ex vivo compared to memory cells isolated from control mice. These findings demonstrate the ability of a short term, low dose simvastatin treatment to modulate memory immune function.


Asunto(s)
Memoria Inmunológica/efectos de los fármacos , Simvastatina/farmacología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus , Animales , Linfocitos B/inmunología , Relación Dosis-Respuesta a Droga , Ratones , Receptores de IgG/inmunología , Simvastatina/administración & dosificación , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...