Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928124

RESUMEN

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Asunto(s)
Frutas , Macadamia , Polimorfismo de Nucleótido Simple , Macadamia/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Autofecundación , Polen/genética , Polen/crecimiento & desarrollo , Polen/efectos de los fármacos , ADN de Plantas/genética , Nueces/genética , Nueces/crecimiento & desarrollo , Polinización
2.
Heliyon ; 10(3): e25221, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356544

RESUMEN

World tree nut production has increased rapidly by around 50 % in the past decade; however, nut defects cause losses. For example, we know that brown centres are a major internal discolouration defect in macadamia nuts and are linked to the storage of nut-in-shell under improper conditions at high temperature and humidity. However, key chemical changes in brown centre kernels have not been described. In this study, we compared brown centres and white kernels from: 1) samples that were "induced" in the laboratory by storing at high moisture concentration; and 2) samples that were dried immediately after harvest using industry best practice methods recommended by the Australian Macadamia Society (AMS). We measured the moisture concentration, sugar concentration, fatty acid concentration, peroxide value, nutrient concentration and volatile compounds of induced and AMS samples. Our results showed that storing nut-in-shell macadamia under wet and hot conditions increased brown centres compared with samples immediately dried using the AMS regime, 10.33 % vs 1.44 %, respectively. Induced brown centres had significantly higher moisture concentrations than induced white centres. Volatile compounds including nonanoic acid, octanoic acid and 2,3 butanediol were identified and associated with brown centre formation in macadamia kernels and the initiation of lipid oxidation. Our results suggest sugar hydrolysis and the Maillard reaction are associated with brown centres both in laboratory induced samples and those formed using industry best practice drying methods. Our study suggests improper drying and storage at high temperature and high humidity are likely to result in brown centre formation. We recommend brown centre losses can be reduced by appropriate drying and storage practices.

3.
Environ Sci Pollut Res Int ; 30(53): 114166-114182, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858016

RESUMEN

Managing the nutritional status of strawberry plants is critical for optimizing yield. This study evaluated the potential of hyperspectral imaging (400-1,000 nm) to estimate nitrogen (N), phosphorus (P), potassium (K), and calcium (Ca) concentrations in strawberry leaves, flowers, unripe fruit, and ripe fruit and to predict plant yield. Partial least squares regression (PLSR) models were developed to estimate nutrient concentrations. The determination coefficient of prediction (R2P) and ratio of performance to deviation (RPD) were used to evaluate prediction accuracy, which often proved to be greater for leaves, flowers, and unripe fruit than for ripe fruit. The prediction accuracies for N concentration were R2P = 0.64, 0.60, 0.81, and 0.30, and RPD = 1.64, 1.59, 2.64, and 1.31, for leaves, flowers, unripe fruit, and ripe fruit, respectively. Prediction accuracies for Ca concentrations were R2P = 0.70, 0.62, 0.61, and 0.03, and RPD = 1.77, 1.63, 1.60, and 1.15, for the same respective plant parts. Yield and fruit mass only had significant linear relationships with the Difference Vegetation Index (R2 = 0.256 and 0.266, respectively) among the eleven vegetation indices tested. Hyperspectral imaging showed potential for estimating nutrient status in strawberry crops. This technology will assist growers to make rapid nutrient-management decisions, allowing for optimal yield and quality.


Asunto(s)
Fragaria , Imágenes Hiperespectrales , Frutas , Hojas de la Planta , Flores , Calcio , Nutrientes
4.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771641

RESUMEN

Tree crop yield is highly dependent on fertiliser inputs, which are often guided by the assessment of foliar nutrient levels. Traditional methods for nutrient analysis are time-consuming but hyperspectral imaging has potential for rapid nutrient assessment. Hyperspectral imaging has generally been performed using the adaxial surface of leaves although the predictive performance of spectral data has rarely been compared between adaxial and abaxial surfaces of tree leaves. We aimed to evaluate the capacity of laboratory-based hyperspectral imaging (400-1000 nm wavelengths) to predict the nutrient concentrations in macadamia leaves. We also aimed to compare the prediction accuracy from adaxial and abaxial leaf surfaces. We sampled leaves from 30 macadamia trees at 0, 6, 10 and 26 weeks after flowering and captured hyperspectral images of their adaxial and abaxial surfaces. Partial least squares regression (PLSR) models were developed to predict foliar nutrient concentrations. Coefficients of determination (R2P) and ratios of prediction to deviation (RPDs) were used to evaluate prediction accuracy. The models reliably predicted foliar nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), manganese (Mn), sulphur (S) and zinc (Zn) concentrations. The best-fit models generally predicted nutrient concentrations from spectral data of the adaxial surface (e.g., N: R2P = 0.55, RPD = 1.52; P: R2P = 0.77, RPD = 2.11; K: R2P = 0.77, RPD = 2.12; Ca: R2P = 0.75, RPD = 2.04). Hyperspectral imaging showed great potential for predicting nutrient status. Rapid nutrient assessment through hyperspectral imaging could aid growers to increase orchard productivity by managing fertiliser inputs in a more-timely fashion.

5.
PLoS One ; 17(9): e0273457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099262

RESUMEN

Cross-pollination can increase fruit production in both self-incompatible and self-compatible fruit crops. However, it is often unclear what proportions of the fruit crop result from cross-pollination. We quantified the proportion of cross-pollinated seeds and the proportion of fertilised seeds in two strawberry cultivars, Red Rhapsody and Sundrench, at increasing distances from a cross-pollen source. We assessed whether fully self-pollinated fruit and partly cross-pollinated fruit differed in fruit size, colour, firmness, Brix and acidity. We also assessed whether fruit size and quality were affected by the number or percentage of fertilised seeds. Almost all seeds of both cultivars resulted from self-pollination (~98%), even at only 1 m from a cross-pollen source. Distance from a cross-pollen source did not affect the proportion of partly cross-pollinated fruit or the proportion of cross-pollinated seeds per fruit. The mass and diameter of fully self-pollinated Sundrench fruit, and the redness and Brix of fully self-pollinated Red Rhapsody fruit, were higher than partly cross-pollinated fruit. Fruit mass, length and diameter increased, and acidity decreased, with increasing numbers of fertilised seeds in both cultivars. Fruit mass also increased with the percentage of fertilised seeds. Our results show that cross-pollination was not required for Red Rhapsody and Sundrench fruit production, and that cross-pollination was a rare occurrence even close to cross pollen source. Self-pollen deposition on stigmas is required to maximise the number of fertilised seeds, and consequently fruit size and quality. Our research indicates that bees improve strawberry fruit size by increasing the number of stigmas that receive pollen. Our results suggest that placing bee hives on strawberry farms during flowering and establishing nearby pollinator habitat to support wild pollinators could improve strawberry yield and fruit quality.


Asunto(s)
Fragaria , Animales , Abejas , Frutas , Paternidad , Polinización , Semillas
6.
PLoS One ; 17(6): e0269485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35657926

RESUMEN

Pollen-parent effects on fruit size and quality have been found previously among competing self-pollinated and cross-pollinated fruit on the same Redlands Joy strawberry plant. These effects occur independently of the percentage of fertilized seeds on the fruit, but the expression of these effects on fruit size and some aspects of quality are greatest when calcium is in shortest supply. Here, we aimed to clarify at what developmental stages the self-pollinated and cross-pollinated fruit diverge in size and quality and whether differences between self-pollinated and cross-pollinated fruit are due to early differences in nutrient accumulation. Fruit were harvested at 1, 2 and 3 weeks after hand-pollination and at full ripeness, approximately 4 weeks after hand-pollination. We measured fruit mass, length, diameter, colour, and the concentrations of aluminium, boron, calcium, copper, iron, nitrogen, magnesium, manganese, sodium, phospho-rous, potassium and zinc. Temporary increases in fruit mass, length or diameter due to cross-pollination were evident at 1 or 2 weeks after pollination. Consistent increases in size and skin darkness from cross-pollination emerged in the final week of fruit development. We found little evidence that self-pollinated and cross-pollinated fruit differed in mineral nutrient accumulation at any stage of fruit development. The results demonstrate that cross-pollination effects on strawberry fruit size are evident briefly during early fruit growth but emerge mainly during the final week of fruit development. The effects of cross-pollination on fruit size are not the result of early differences in mineral nutrient accumulation between self-pollinated and cross-pollinated fruit.


Asunto(s)
Fragaria , Biomasa , Calcio/metabolismo , Frutas , Minerales/metabolismo , Nutrientes , Polinización
7.
Environ Sci Pollut Res Int ; 29(5): 7170-7184, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34472026

RESUMEN

Biochar compound fertilisers (BCFs) are an emerging technology that combine biochar with nutrients, clays and minerals and can be formulated to address specific issues in soil-plant systems. However, knowledge of BCF performance over consecutive crops and without re-application is limited. This study aims to assess the residual effect of organic BCFs soil-plant nutrient cycling 2 years after application and without additional fertiliser inputs. We applied BCFs and biochar with organic fertiliser amendments and established a crop of ginger and a second crop of turmeric (Curcuma longa) without re-application or additional fertilisation. All treatment formulations included bamboo-biochar and organic fertiliser amendments; however, two novel BCFs were formulated to promote agronomic response in an intensive cropping system. We report here on the effect of treatments on soil and plant macronutrient and micronutrient cycling and turmeric growth, biomass and yield at harvest. Both BCFs (enriched (10 t ha-1) and organo-mineral biochar (8.6 t ha-1) increased foliar K (+155% and +120%) and decreased foliar Mg (-20% and -19%) concentration compared with all other treatments, suggesting antagonism between K and Mg. Plants were limited for K, P and B at harvest but not N, Ca or Mg. Foliar K was dependent on the biochar formulation rather than the rate of application. Biochar-clay aggregates increased K retention and cycling in the soil solution 2 years after application. Clay blended BCFs reduced K limitation in turmeric compared to biochar co-applied with organic amendments, suggesting these blends can be used to manage organic K nutrition. All formulations and rates of biochar increased leaf biomass and shoot-to-root ratio. Novel BCFs should be considered as an alternative to co-applying biochar with organic fertiliser amendments to decrease application rates and increase economic feasibility for farmers. Applying BCFs without re-application or supplementary fertiliser did not provide sufficient K or P reserves in the second year for consecutive cropping. Therefore, supplementary fertilisation is recommended to avoid nutrient deficiency and reduced yield for consecutive organic rhizome crops.


Asunto(s)
Carbón Orgánico , Fertilizantes , Fertilizantes/análisis , Potasio , Suelo
8.
Ann Bot ; 129(2): 135-146, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34473241

RESUMEN

BACKGROUND AND AIMS: Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS: We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS: Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS: This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.


Asunto(s)
Proteaceae , Árboles , Animales , Flores , Macadamia/genética , Polen , Polinización , Reproducción
9.
PLoS One ; 16(9): e0256964, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492053

RESUMEN

Cross-pollination affects the fruit characteristics of many crops but the effects of cross-pollination on fruit quality of strawberry (Fragaria × ananassa Duch.) are poorly known. This study determined how cross-pollination affects fruit quality of the strawberry cultivar, Redlands Joy, under controlled environment conditions. Plants were allocated to one of four treatments, with all flowers on each plant receiving either: (1) unassisted self-pollination (Autogamy); (2) hand-pollination with Redlands Joy pollen (Self); (3) hand-pollination with cross-pollen from a small-fruited cultivar (Sugarbaby); or (4) hand-pollination with cross-pollen from a large-fruited cultivar (Rubygem). Cross-pollination did not significantly affect plant yield or fruit mass, size, shape, firmness or shelf life. However, cross-pollination affected fruit colour and taste attributes. Cross-pollinated fruit were 3%-5% darker than self-pollinated fruit. They also had 26%-34% lower acidity and 43%-58% higher Brix:acid ratio. Cross-pollination by Sugarbaby increased fruit P, K, Ca, Fe and Mn, but decreased B, Cu and Zn, concentrations. Cross-pollination by Rubygem increased fruit Mn, but decreased K and Na, concentrations and reduced shelf life. Fruit mass, length, diameter and firmness within all treatments increased with increasing numbers of fertilized seeds per fruit. Hand self-pollinated fruit had a higher percentage of fertilized seeds than fruit arising from autogamy and they were also darker, redder, firmer, and had a longer shelf life, higher protein concentration, and lower Al and Na concentrations. The results indicate that strawberry fruit quality can be affected by both the source of pollen and the number of stigmas pollinated.


Asunto(s)
Fertilización/genética , Fragaria/crecimiento & desarrollo , Frutas/genética , Reproducción/genética , Ácidos/química , Color , Productos Agrícolas , Fertilización/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Almacenamiento de Alimentos , Fragaria/genética , Frutas/crecimiento & desarrollo , Polen/genética , Polinización/genética , Reproducción/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo
10.
Ecol Evol ; 11(15): 10468-10482, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367589

RESUMEN

Flowering plants in tropical rainforests rely heavily on pollen vectors for successful reproduction. Research into pollination systems in tropical rainforests is dominated by canopy species, while subcanopy plant-pollinator interactions remain under-represented. The microclimate beneath the rainforest canopy is characterized by low light levels and is markedly different from the canopy environment that receives more light energy.We studied the floral attractants and floral visitors of a dioecious, subcanopy tree, Fontainea picrosperma (Euphorbiaceae), in the Wet Tropics bioregion of northern Queensland, Australia.We found that wind pollination is rare and male and female flowers do not produce nectar. Female flowers are likely pollinated due to their perceptual similarity to pollen-offering male flowers. Female flowers had the same scent profile as male flowers, and floral scent was an important floral attractant that acted to regulate pollinator behavior. The two most abundant scent compounds present in the floral bouquet were benzyl alcohol and 4-oxoisophorone. These compounds are ubiquitous in nature and are known to attract a wide variety of insects. Both day-time and night-time pollinators contributed to successful pollen deposition on the stigma, and diurnal flower visitors were identified from several orders of insects including beetles, flies, predatory wasps, and thrips. Fontainea picrosperma is therefore likely to be pollinated by a diverse array of small insects.Synthesis. Our data indicate that F. picrosperma has a generalist, entomophilous pollination syndrome. The rainforest subcanopy is a distinctive environment characterized by low light levels, low or turbulent wind speeds, and relatively high humidity. Female flowers of F. picrosperma exhibit cost-saving strategies by not producing nectar and mimicking the smell of reward-offering male flowers. Insects opportunistically forage on or inhabit flowers, and pollination occurs from a pool of small insects with low energy requirements that are found beneath the rainforest canopy.

11.
Environ Sci Pollut Res Int ; 28(6): 6684-6690, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33009613

RESUMEN

Biochar has strong potential to improve nitrogen (N) use efficiency in both agricultural and horticultural systems. Biochar is usually co-applied with full rates of fertiliser. However, the extent to which N cycling can be affected after biochar application to meet plant N requirement remains uncertain. This study aimed to explore N cycling up to 2 years after biochar application. We applied pine woodchip biochar at 0, 10 and 30 t ha-1 (B0, B10, B30, respectively) in a macadamia orchard and evaluated the N isotope composition (δ15N) of soil, microbial biomass and macadamia leaves. Soil total N (TN) and inorganic N pools were also measured up to 2 years after biochar application. Biochar did not alter soil TN but soil NO3--N increased at months 12 and 24 after biochar application. Soil NO3--N concentrations were always over ideal levels of 15 µg g-1 in B30 throughout the study. Stepwise regression indicated that foliar δ15N decreases after biochar application were explained by increased NO3--N concentrations in B30. Foliar TN and photosynthesis were not affected by biochar application. The soil in the high rate biochar plots had excess NO3--N concentrations (over 30 µg g-1) from month 20 onwards. Therefore, N fertiliser applications could be adjusted to prevent excessive N inputs and increase farm profitability.


Asunto(s)
Carbón Orgánico , Suelo , Nitrógeno/análisis , Isótopos de Nitrógeno
12.
Insects ; 11(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271986

RESUMEN

(1) Background: Landscape simplification is a major threat to bee and wasp conservation in the tropics, but reliable, long-term population data are lacking. We investigated how community composition, diversity, and abundance of tropical solitary bees and wasps change with landscape simplification (plant diversity, plant richness, distance from forest, forest cover, and land use type) and season. (2) Methods: We installed 336 timber and cob trap nests in four complex forests and three simplified orchards within the subtropical biodiversity hotspot of south-east Queensland, Australia. Trap nests were replaced every season for 23 months and all emergents identified. (3) Results: We identified 28 wasp species and 13 bee species from 2251 brood cells. Bee and wasp community composition changed with landscape simplification such that large, ground-nesting, and spider-hunting species were present in all landscapes, while those with specialist resource requirements and (clepto) parasitoids were present only in complex landscapes. Abundance and diversity of bees and wasps were unaffected by landscape simplification but increased with rainfall. (4) Conclusions: This study highlights the need for multi-year studies incorporating nuanced measures such as composition with a focus on functional diversity to detect changes bee and wasp populations.

13.
Plants (Basel) ; 9(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053871

RESUMEN

Tree nuts play an important role in healthy diets, but their economic value and nutritional quality may be affected by their size and paternity. We assessed relationships between nut size and kernel recovery, the incidence of whole kernels, fatty acid composition and mineral nutrient concentrations in three macadamia cultivars, "Daddow", "816" and "A4". We determined to what extent differences in nut size and quality were the result of different levels of cross- or self-paternity. Small nuts of all cultivars had lower kernel recovery than large nuts, and small nuts provided lower incidence of whole kernels in "Daddow" and "A4". Small kernels had a lower relative abundance of the saturated fatty acid, palmitic acid, in all cultivars and higher relative abundance of the unsaturated fatty acid, oleic acid, in "Daddow" and "A4". Small kernels had higher concentrations of many essential nutrients such as nitrogen and calcium, although potassium concentrations were lower in small kernels. Most nuts arose from cross-pollination. Therefore, nut size and kernel quality were not related to different levels of cross- and self-paternity. Identified cross-paternity was 88%, 78% and 90%, and identified self-paternity was 3%, 2% and 0%, for "Daddow", "816" and "A4", respectively. Small macadamia kernels are at least as nutritious as large macadamia kernels. High levels of cross-paternity confirmed that many macadamia cultivars are predominantly outcrossing. Macadamia growers may need to closely inter-plant cultivars and manage beehives to maximise cross-pollination.

14.
Heredity (Edinb) ; 123(4): 503-516, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076650

RESUMEN

Gene flow via pollen movement affects genetic variation in plant populations and is an important consideration in plant domestication. Fontainea picrosperma is a subcanopy rainforest tree that is of commercial interest because it is the source of tigilanol tiglate, a natural product used for the treatment of solid tumors. We identify patterns of pollen-mediated gene flow within natural populations of F. picrosperma and estimate genetic parameters and genetic structure between adult and juvenile groups using microsatellite markers. Our results show pollination events occur over much shorter distances than reported for tropical canopy species. At least 63% of seeds are sired by male trees located within 30 m of the mother. On average, 27% of the local male population contributed to successful reproduction of F. picrosperma with most fathers siring a single seed, however, the contributions to reproduction were uneven. Larger male trees with more flowers had greater reproductive success than those with less flowers (P < 0.05). There were comparatively low levels of genetic variation across the species (HE = 0.405 for adult trees and 0.379 for juveniles) and we found no loss of genetic diversity between adult and juvenile trees. Short distance pollen flow and low genetic diversity is theoretically a prelude to genetic impoverishment, however F. picrosperma has persisted through multiple significant climatic oscillations. Nevertheless, the remaining low genetic diversity is of concern for domestication programs which require maximal genetic diversity to facilitate efficient selective breeding and genetic improvement of this commercially significant species.


Asunto(s)
Euphorbiaceae/genética , Variación Genética , Polen/genética , Polinización/genética , Cruzamiento , Euphorbiaceae/crecimiento & desarrollo , Genética de Población , Repeticiones de Microsatélite/genética , Polen/crecimiento & desarrollo , Bosque Lluvioso , Árboles/genética
15.
Environ Sci Pollut Res Int ; 26(21): 22021-22029, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31144175

RESUMEN

The selection of shade trees with appropriate spacing is important for minimising their impact on nutrient accumulation by understorey cash crops in agroforestry systems. Cocoa trees may be intercropped with overstorey legume or non-legume shade trees. A legume tree and/or a non-legume timber tree with edible kernels (Gliricidia sepium and Canarium indicum, respectively) are used as shade trees in cocoa plantations particularly in Papua New Guinea. This study explored the nutrient concentrations of cocoa beans in response to both tree-shade species and shade-tree spacing regime. The study also investigated the extent to which C. indicum tree spacing altered the nutrient concentrations of canarium kernels. G. sepium trees in the study had a final spacing of 12 m × 12 m while the spacing regimes of either 8 m × 8 m or 8 m × 16 m used for C. indicum. The calcium (Ca) concentrations of cocoa beans did not differ significantly between plants located next to G. sepium and plants located next to C. indicum. Cocoa beans next to C. indicum trees with spacing of 8 m × 16 m had higher potassium (K) concentrations than those next to G. sepium trees. However, phosphorus (P) concentrations of cocoa beans next to C. indicum trees with spacing of 8 m × 8 m or next to G. sepium trees were significantly higher than those next to C. indicum trees with spacing of 8 m × 16 m. The K concentrations in cocoa beans and soil were not correlated nor were the P concentrations in cocoa beans and soil. Correlations between nutrients in leaves and cocoa beans, or between leaves and canarium kernels, were not strong. Our results suggest that cocoa and canarium trees can be intercropped successfully, and that they do not compete for soil nutrients.


Asunto(s)
Agricultura/métodos , Cacao/química , Minerales/análisis , Productos Agrícolas , Fabaceae/fisiología , Nutrientes/análisis , Nueces , Papúa Nueva Guinea , Fósforo/análisis , Suelo , Árboles/fisiología
16.
J Food Sci Technol ; 56(2): 792-798, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30906037

RESUMEN

Daily consumption of nuts is recommended as a part of a healthy diet as they contain protein and are rich in beneficial fatty acids and essential nutrients. The nutritional qualities of nuts are affected by their fatty acid composition and other factors such as maturity. Oil oxidative stability is important to determine nut nutritional quality in terms of fatty acid composition over storage. Therefore, this study aimed to (a) assess the nutritional quality (photooxidative stability and nutrient composition) of almond, cashew, pistachio and canarium (a newly commercialised indigenous nut); and (b) explore differences in nutrient concentrations between immature and mature canarium nuts. A decrease in polyunsaturated fats after photooxidation in almond and pistachio was observed. Canarium oil did not change following photooxidation suggesting canarium may display a long shelf life when stored appropriately. Our study indicated that almond provided over 50% of the recommended daily intake for manganese whereas canarium intake provided 50% of the recommended daily intake for iron (for males). Pistachio was richer in potassium compared with other nuts and canarium was richer in boron, iron and zinc than other nut species. Mature canarium kernels were richer in boron, iron and zinc but contained less potassium than immature canarium. Therefore, the current study recommended to store kernels in dark to decrease oil photooxidation, and maturity of canarium kernels at the harvest time was important affecting nutrient concentrations of kernels.

17.
Sci Rep ; 8(1): 12353, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120304

RESUMEN

Bee population declines are often linked to human impacts, especially habitat and biodiversity loss, but empirical evidence is lacking. To clarify the link between biodiversity loss and bee decline, we examined how floral diversity affects (reproductive) fitness and population growth of a social stingless bee. For the first time, we related available resource diversity and abundance to resource (quality and quantity) intake and colony reproduction, over more than two years. Our results reveal plant diversity as key driver of bee fitness. Social bee colonies were fitter and their populations grew faster in more florally diverse environments due to a continuous supply of food resources. Colonies responded to high plant diversity with increased resource intake and colony food stores. Our findings thus point to biodiversity loss as main reason for the observed bee decline.


Asunto(s)
Abejas , Conducta Animal , Ambiente , Aptitud Física , Animales , Biodiversidad , Ecosistema , Dinámica Poblacional
18.
Sci Total Environ ; 636: 142-151, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29704711

RESUMEN

Biochar has been shown to affect soil microbial diversity and abundance. Soil microbes play a key role in soil nutrient cycling, but there is still a dearth of knowledge on the responses of soil microbes to biochar amendments, particularly for longer-term or repeated applications. We sampled soil from a field trial to determine the individual and combined effects of newly applied (1 year ago), re-applied (1 year ago into aged biochar) and aged (9 years ago) biochar amendments on soil bacterial communities, with the aim of identifying the potential underlying mechanisms or consequences of these effects. Soil bacterial diversity and community composition were analysed by sequencing of 16S rRNA using a Miseq platform. This investigation showed that biochar in soil after 1 year significantly increased bacterial diversity and the relative abundance of nitrifiers and bacteria consuming pyrogenic carbon (C). We also found that the reapplication of biochar had no significant effects on soil bacterial communities. Mantel correlation between bacterial diversity and soil chemical properties for four treatments showed that the changes in soil microbial community composition were well explained by soil pH, electrical conductivity (EC), extractable organic C and total extractable nitrogen (N). These results suggested that the effects of biochar amendment on soil bacterial communities were highly time-dependent. Our study highlighted the acclimation of soil bacteria on receiving repeated biochar amendment, leading to similar bacterial diversity and community structure among 9-years old applied biochar, repeated biochar treatments and control.

19.
Plants (Basel) ; 6(3)2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28906457

RESUMEN

Traditional medicine and ecological cues can both help to reveal bioactive natural compounds. Indigenous Australians have long used kino from trunks of the eucalypt tree, Corymbia citriodora, in traditional medicine. A closely related eucalypt, C. torelliana, produces a fruit resin with antimicrobial properties that is highly attractive to stingless bees. We tested the antimicrobial activity of extracts from kino of C. citriodora, C. torelliana × C. citriodora, and C. torelliana against three Gram-negative and two Gram-positive bacteria and the unicellular fungus, Candida albicans. All extracts were active against all microbes, with the highest activity observed against P. aeruginosa. We tested the activity of seven flavonoids from the kino of C. torelliana against P. aeruginosa and S. aureus. All flavonoids were active against P. aeruginosa, and one compound, (+)-(2S)-4',5,7-trihydroxy-6-methylflavanone, was active against S. aureus. Another compound, 4',5,7-trihydroxy-6,8-dimethylflavanone, greatly increased biofilm formation by both P. aeruginosa and S. aureus. The presence or absence of methyl groups at positions 6 and 8 in the flavonoid A ring determined their anti-Staphylococcus and biofilm-stimulating activity. One of the most abundant and active compounds, 3,4',5,7-tetrahydroxyflavanone, was tested further against P. aeruginosa and was found to be bacteriostatic at its minimum inhibitory concentration of 200 µg/mL. This flavanonol reduced adhesion of P. aeruginosa cells while inducing no cytotoxic effects in Vero cells. This study demonstrated the antimicrobial properties of flavonoids in eucalypt kino and highlighted that traditional medicinal knowledge and ecological cues can reveal valuable natural compounds.

20.
PLoS One ; 12(9): e0184279, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902859

RESUMEN

Roasting nuts may alter their chemical composition leading to changes in their health benefits. However, the presence of testa may alleviate the negative effects of thermal treatments. Hence, this study aimed to explore the effects of roasting on kernel chemical quality and colour development of Canarium indicum and examine to what extent testa would protect kernels against damage from roasting. Roasting decreased peroxide value but increased free fatty acid, probably due to increased cell destruction and lack of enzyme inactivation, respectively. Protein content of kernels significantly decreased after roasting compared to raw kernels. However, testa-on kernels contained significantly higher protein content compared to testa-off kernels. Whilst colour development and mottling were observed in temperatures beyond 120°C, roasting did not alter fatty acid compositions of kernels. The mild roasting and presence of testa in kernels can be used to enhance health benefits of kernels.


Asunto(s)
Culinaria , Ácidos Grasos/análisis , Manipulación de Alimentos/métodos , Nueces/química , Peróxidos/análisis , Proteínas/análisis , Antioxidantes/análisis , Culinaria/métodos , Calor/efectos adversos , Metabolismo de los Lípidos , Valor Nutritivo , Nueces/metabolismo , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...