RESUMEN
Abstract Voriconazole increases tacrolimus blood concentration significantly when coadministrated. The recommendation of reducing tacrolimus to 1/3 in voriconazole package insert seems not to be satisfactory in clinical practice. In vitro studies demonstrated that the magnitude of inhibition depends on the concentration of voriconazole, while voriconazole exposure is determined by the genotype status of CYP2C19. CYP2C19 gene polymorphism challenges the management of drug-drug interactions(DDIs) between voriconazole and tacrolimus. This work aimed to predict the impact of CYP2C19 polymorphism on the DDIs by using physiologically based pharmacokinetics (PBPK) models. The precision of the developed voriconazole and tacrolimus models was reasonable by evaluating the pharmacokinetic parameters fold error, such as AUC0-24, Cmax and tmax. Voriconazole increased tacrolimus concentration immediately in all population. The simulated duration of DDIs disappearance after voriconazole withdrawal were 146h, 90h and 66h in poor metabolizers (PMs), intermediate metabolizers (IMs) and extensive metabolizers(EMs), respectively. The developed and optimized PBPK models in this study can be applied to assit the dose adjustment for tacrolimus with and without voriconazole.
Asunto(s)
Tacrolimus/agonistas , Factor de Impacto , Voriconazol/agonistas , Citocromo P-450 CYP2C19/análisis , Técnicas In Vitro/métodos , Preparaciones Farmacéuticas/administración & dosificación , Adaptación Psicológica/clasificaciónRESUMEN
Genomic simple sequence repeat (SSR) markers are particularly valuable in studies of genetic diversity, evolution, genetic linkage map construction, quantitative trait loci tagging, and marker-assisted selection because of their multi-allelic nature, reproducibility, co-dominant inheritance, high abundance, and extensive genome coverage. The traditional methods of SSR marker development, such as genomic-SSR hybrid screening and microsatellite enrichment, have the disadvantages of high cost and complex operation. The selectively amplified microsatellite method is less costly and highly efficient as well as being simple and convenient. In this study, 252 sequences with SSRs were cloned from the rubber tree (Hevea brasiliensis) genome from which 258 SSR loci were obtained. The average repeat number was six. There were only 10 (3.9%) mononucleotide, trinucleotide, and pentanucleotide repeats, whereas the remaining 248 (96.1%) were dinucleotide repeats, including 128 (49.6%) GT/CA repeats, 118 (45.7%) GA/CT repeats, and 2 (0.8%) AT/TA repeats. A total of 126 primer pairs (see ESM) were successfully designed of which 36 primer pairs generated polymorphic products from 12 accessions of the cultivated species, 4 related species, and 3 species of the family Euphorbiaceae. In addition, investigations based on four genomic SSRs (GAR4, ACR22, CTR25, and GTR28) by cloning and sequencing provided evidence for cross-species/genera applicability, and homologous sequences were obtained from the rubber tree and Euphorbiaceae. Further analysis about the variation of the flanking regions of the four markers was carried out.