Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Inorg Chem ; 63(35): 16274-16283, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39154358

RESUMEN

Different types of electron transfers (ETs) underlie the versatile use of various solid viologen-derived compounds, which is still insufficiently understood and difficult to control. Here, we demonstrate an effective strategy for modulating the key ET process in crystalline metalloviologen compounds (MVCs). By adjusting the coordinated transition metal ions bearing different electronic structures (e.g., d5, d7, d10), three MVCs (i.e., Mn-1, Co-2, and Cd-3) with highly consistent coordination environments have been synthesized successfully. Surprisingly, whether the photochromism (energy-induced ET mechanism) or the specific analyte recognition (molecule-induced ET mechanism), compound Cd-3 exhibits obvious photochromic behavior and differential dimethylamine detection. Combined detailed structural analysis with theoretical calculations, such unique ion-dependent properties, were correlated to the fine modulation of the electron density of the bipyridinium cores by metal ions. Additionally, thanks to the delicate recognition of dimethylamine vapor, a convenient test strip Cd-3-PAN was prepared as a sensitive biogenic amine sensor for evaluating the real-time freshness of seafood.

2.
Chin J Traumatol ; 27(5): 279-283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068132

RESUMEN

PURPOSE: The removal of small foreign bodies embedded within the deep soft tissues of the maxillofacial region is a complex and challenging task for maxillofacial surgeons. The purpose of this study was to explore the efficacy of the combination of intraoperative CT and surgical navigation for the removal of small foreign objects in the maxillofacial region. METHODS: A serial case study was conducted involving all consecutive patients who underwent surgical removal of small foreign bodies in the maxillofacial region. The combination of intraoperative CT and a surgical navigation system was used at a single medical institution from January 2018 to December 2022. Comprehensive data, including patient demographics, characteristics of the foreign bodies, previous surgical interventions, duration of the surgical procedure, and removal success rate were collected for this study. Relevant data were recorded into Microsoft Excel sheet and analyzed using SPSS version 22.0. RESULTS: Nine patients (6 males and 3 females) were included in this study, with an average age of 37 years. Each patient had previously undergone an unsuccessful removal attempt utilizing conventional surgical methods based on preoperative CT imaging or C-arm guidance at a local healthcare facility. Four patients also experienced unsuccessful attempts with preoperative CT image-based navigation systems. However, by employing the combined approach of intraoperative CT and surgical navigation, the foreign bodies were successfully removed in all 9 patients. The mean duration of the surgical procedure was 59 min, and the average size of the foreign bodies was approximately 26 mm³. Postoperative follow-up exceeding 6 months revealed no complications. CONCLUSION: The combined use of a surgical navigation system and intraoperative CT represents a potent and effective strategy for the precise localization and subsequent removal of small foreign bodies from the soft tissue structures of the maxillofacial region. This integrative approach appears to increase the success rate of surgical interventions in such cases.


Asunto(s)
Cuerpos Extraños , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Cuerpos Extraños/cirugía , Cuerpos Extraños/diagnóstico por imagen , Adulto , Persona de Mediana Edad , Sistemas de Navegación Quirúrgica , Adulto Joven , Cirugía Asistida por Computador/métodos , Traumatismos Maxilofaciales/cirugía , Traumatismos Maxilofaciales/diagnóstico por imagen
3.
Chinese Journal of School Health ; (12): 104-109, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1011357

RESUMEN

Objective@#To investigate the differences and diversity changes in gut microbiota between children and adolescents with constipation and diarrhea, and healthy individuals, and to explore the correlation between changes in stool consistency and gut microbiota, in order to provide a scientific reference for the research on intestinal microecology among children and adolescents.@*Methods@#From October 2021 to March 2022, a total of 42 children and adolescents with constipation and 37 with diarrhea from a tertiary hospital in Hangzhou City, and 43 healthy individuals from 3 primary and secondary schools were included in this study. Fecal samples of children and adolescents were collected and then stool genomic DNA was extracted for 16S rRNA gene high throughput sequencing, and the sequencing results were analyzed. In the analysis of alpha diversity, the Kruskal-Wallis rank sum test was used to compare the differences between the three groups, and the FDR multiple testing correction was used for pairwise comparisons. In the analysis of beta diversity, the Adonis test was used to compare the overall differences between the three groups, and the ANOSIM test was used for pairwise comparisons. In the LEfSe analysis, the LDA scores obtained through LDA analysis (linear regression analysis).@*Results@#Alpha diversity analysis showed that there were statistically significant differences in the Shannon index (4.01, 3.81, 4.19) and Simpson index (0.05, 0.06, 0.04) between the diarrhea group, constipation group, and healthy group ( H=6.05, 6.35, P <0.1). Further pairwise comparison showed that the Shannon index and Simpson index of the healthy group were higher than those of the constipation group ( P <0.1). Beta diversity analysis showed that the impact of grouping factors on inter group differences was statistically significant ( R 2=0.045, P <0.1). Community composition analysis showed that there were 234 species in total among the three groups, and 36 unique species in the healthy group, 36 species in the diarrhea group, and 48 species in the constipation group. Species difference analysis showed significant differences in species composition at the genus level among the three groups ( H=0.000 05, 0.000 16, 0.000 20, 0.000 21, 0.000 53, 0.001 39, P <0.1), including Lachnospiraceae of Firmicutes phylum, Eubacterium hallii, Veillonellaceae, Qscillospiraceae, Butyricicoccaceae and Staphylococcaceae, respectively. KEGG abundance statistics and COG functional analysis showed that there were no significant differences in gene expression abundance of the same function among the three groups ( P >0.1).@*Conclusions@#The different stool consistency of children and adolescents is related to changes in gut microbiota composition. Compared to the healthy group, children with constipation or diarrhea have disrupted gut microbiota balance, with a shift in dominant bacteria and a higher abundance of opportunistic pathogens.

4.
Inorg Chem ; 63(21): 9511-9519, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38135507

RESUMEN

Lanthanide complexes with judiciously designed ligands have been extensively studied for their potential applications as single-molecule magnets. With the influence of ligands on their magnetic properties generally established, recent research has unearthed certain effects inherent to site differentiation due to the different types and varying numbers of substituents on the same ligand platform. Using two new sandwich-type Er(III) complexes with cyclooctatetraenyl (COT) ligands featuring two differently positioned trimethylsilyl (TMS) substituents, namely, [Li(DME)Er(COT1,5-TMS2)2]n (Er1) and [Na(DME)3][Er(COT1,3-TMS2)2] (Er2) [COT1,3-TMS2 and COT1,5-TMS2 donate 1,3- and 1,5-bis(trimethylsilyl)-substituted cyclooctatetraenyl ligands, respectively; DME = 1,2-dimethoxyethane], and with reference to previously reported [Li(DME)3][Er(COT1,4-TMS2)2] (A) and [K(DME)2][Er(COT1,4-TMS2)2] (B), any possible substituent position effects have been explored for the first time. The rearrangement of the TMS substituents from the starting COT1,4-TMS2 to COT1,3-TMS2 and COT1,5-TMS2, by way of formal migration of the TMS group, was thermally induced in the case of Er1, while for the formation of Er2, the use of Na+ in the placement of its Li+ and K+ congeners is essential. Both Er1 and Er2 display single-molecule magnetic behaviors with energy barriers of 170(3) and 172(6) K, respectively. Magnetic hysteresis loops, butterfly-shaped for Er1 and wide open for Er2, were observed up to 12 K for Er1 and 13 K for Er2. Studies of magnetic dynamics reveal the different pathways for relaxation of magnetization below 10 K, mainly by the Raman process for Er1 and by quantum tunneling of magnetization for Er2, leading to the order of magnitude difference in magnetic relaxation times and sharply different magnetic hysteresis loops.

5.
Inorg Chem ; 62(49): 20184-20193, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994798

RESUMEN

Two pairs of homochiral Dy(III) tetranuclear cluster complexes derived from (+)/(-)-3-trifluoroacetyl camphor (D-Htfc/L-Htfc), [Dy4(OH)2(L1)4(D-tfc)2(DMF)2]·4DMF (D-1) [H2L1 = (E)-2-(2-hydroxy-3-methoxybenzylideneamino)phenol)]/[Dy4(OH)2(L1)4(L-tfc)2(DMF)2]·4DMF (L-1) and [Dy4(OH)2(L2)4(D-tfc)2(DMF)2]·2H2O·3MeCN (D-2) [H2L2 = (E)-3-(2-hydroxy-3-methoxybenzylideneamino)naphthalen-2-ol]/[Dy4(OH)2(L2)4(L-tfc)2(DMF)2]·2H2O·3MeCN (L-2), were synthesized at room temperature, which have a Dy4 parallelogram-like core. The magnetic studies revealed that D-1 exhibits single-molecule magnet (SMM) behavior under zero dc magnetic field, and its magnetic relaxation has a distinct Raman process in addition to the Orbach process, with the Ueff/k value of 57.5 K and the C value of 28.27 s-1K-2.14; while D-2 displays dual magnetic relaxation behavior at 0 Oe field, with the Ueff/k value 114.8 K for the slow relaxation process (SR) and the C value of 10.656 s-1K-5.80 for the fast relaxation process (FR), respectively. Theoretical calculations indicated that the conjugated groups (phenyl vs naphthyl) of the Schiff base bridging ligands (H2L1 and H2L2) significantly affect the intramolecular magnetic interactions between the Dy3+ ions and ultimately lead to different relaxations. Furthermore, magnetic circular dichroism (MCD) measurements showed that these two pairs of Dy4 enantiomers exhibit strong room temperature magneto-optical Faraday effects; notably, increasing the conjugated group on the Schiff base bridging ligand is beneficial to enhancing the magneto-optical Faraday effects.

6.
Dalton Trans ; 52(41): 14797-14806, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812439

RESUMEN

The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.

7.
Nat Commun ; 14(1): 6637, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863887

RESUMEN

Understanding metal-metal bonding involving f-block elements has been a challenging goal in chemistry. Here we report a series of mixed-valence di-metallofullerenes, ThDy@C2n (2n = 72, 76, 78, and 80) and ThY@C2n (2n = 72 and 78), which feature single electron actinide-lanthanide metal-metal bonds, characterized by structural, spectroscopic and computational methods. Crystallographic characterization unambiguously confirmed that Th and Y or Dy are encapsulated inside variably sized fullerene carbon cages. The ESR study of ThY@D3h(5)-C78 shows a doublet as expected for an unpaired electron interacting with Y, and a SQUID magnetometric study of ThDy@D3h(5)-C78 reveals a high-spin ground state for the whole molecule. Theoretical studies further confirm the presence of a single-electron bonding interaction between Y or Dy and Th, due to a significant overlap between hybrid spd orbitals of the two metals.

8.
J Am Chem Soc ; 145(41): 22466-22474, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37738079

RESUMEN

Two-electron oxidations are ubiquitous and play a key role in the synthesis and catalysis. For transition metals and actinides, two-electron oxidation often takes place at a single-metal site. However, redox reactions at rare-earth metals have been limited to one-electron processes due to the lack of accessible oxidation states. Despite recent advancements in nontraditional oxidation state chemistry, the low stability of low-valent compounds and large disparity among different oxidation states prevented the implementation of two-electron processes at a single rare-earth metal center. Here we report two-electron oxidations at a cerium(II) center to yield cerium(IV) terminal oxo and imido complexes. A series of cerium(II-IV) complexes supported by a tripodal tris(amido)arene ligand were synthesized and characterized. Experimental and theoretical studies revealed that the cerium(II) complex is best described as a 4f2 ion stabilized by δ-backdonation to the anchoring arene, while the cerium(IV) oxo and imido complexes exhibit multiple bonding characters. The accomplishment of two-electron oxidations at a single cerium center brings a new facet to molecular rare-earth metal chemistry.

9.
Chemistry ; 29(62): e202302397, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37583100

RESUMEN

Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.

10.
Nat Commun ; 14(1): 4657, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537160

RESUMEN

Understanding and exploiting the redox properties of uranium is of great importance because uranium has a wide range of possible oxidation states and holds great potential for small molecule activation and catalysis. However, it remains challenging to stabilise both low and high-valent uranium ions in a preserved ligand environment. Herein we report the synthesis and characterisation of a series of uranium(II-VI) complexes supported by a tripodal tris(amido)arene ligand. In addition, one- or two-electron redox transformations could be achieved with these compounds. Moreover, combined experimental and theoretical studies unveiled that the ambiphilic uranium-arene interactions are the key to balance the stabilisation of low and high-valent uranium, with the anchoring arene acting as a δ acceptor or a π donor. Our results reinforce the design strategy to incorporate metal-arene interactions in stabilising multiple oxidation states, and open up new avenues to explore the redox chemistry of uranium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA