Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(20): 11876-11894, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370101

RESUMEN

The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.


Asunto(s)
Adenosina Trifosfatasas , Degradación de ARNm Mediada por Codón sin Sentido , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Transactivadores/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ADN Helicasas/genética , ARN/metabolismo
2.
EMBO J ; 41(10): e108898, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35403729

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.


Asunto(s)
Codón sin Sentido , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas , Transactivadores , Regiones no Traducidas 3' , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Isoformas de Proteínas/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
3.
RNA ; 27(4): 513-526, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33500316

RESUMEN

Noncoding RNAs regulate gene expression in every domain of life. In bacteria, small RNAs (sRNAs) regulate gene expression in response to stress and are often assisted by RNA-chaperone proteins, such as Hfq. We have recently developed a bacterial three-hybrid (B3H) assay that detects the strong binding interactions of certain E. coli sRNAs with proteins Hfq and ProQ. Despite the promise of this system, the signal-to-noise has made it challenging to detect weaker interactions. In this work, we use Hfq-sRNA interactions as a model system to optimize the B3H assay, so that weaker RNA-protein interactions can be more reliably detected. We find that the concentration of the RNA-DNA adapter is an important parameter in determining the signal in the system and have modified the plasmid expressing this component to tune its concentration to optimal levels. In addition, we have systematically perturbed the binding affinity of Hfq-RNA interactions to define, for the first time, the relationship between B3H signal and in vitro binding energetics. The new pAdapter construct presented here substantially expands the range of detectable interactions in the B3H assay, broadening its utility. This improved assay will increase the likelihood of identifying novel protein-RNA interactions with the B3H system and will facilitate exploration of the binding mechanisms of these interactions.


Asunto(s)
Bioensayo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Sitios de Unión , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Termodinámica
4.
J Biol Chem ; 295(33): 11613-11625, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32571872

RESUMEN

The sequence-specific RNA-binding proteins PTBP1 (polypyrimidine tract-binding protein 1) and HNRNP L (heterogeneous nuclear ribonucleoprotein L) protect mRNAs from nonsense-mediated decay (NMD) by preventing the UPF1 RNA helicase from associating with potential decay targets. Here, by analyzing in vitro helicase activity, dissociation of UPF1 from purified mRNPs, and transcriptome-wide UPF1 RNA binding, we present the mechanistic basis for inhibition of NMD by PTBP1. Unlike mechanisms of RNA stabilization that depend on direct competition for binding sites among protective RNA-binding proteins and decay factors, PTBP1 promotes displacement of UPF1 already bound to potential substrates. Our results show that PTBP1 directly exploits the tendency of UPF1 to release RNA upon ATP binding and hydrolysis. We further find that UPF1 sensitivity to PTBP1 is coordinated by a regulatory loop in domain 1B of UPF1. We propose that the UPF1 regulatory loop and protective proteins control kinetic proofreading of potential NMD substrates, presenting a new model for RNA helicase regulation and target selection in the NMD pathway.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Helicasas/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfato/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/química , Humanos , Modelos Moleculares , Proteína de Unión al Tracto de Polipirimidina/química , Dominios Proteicos , ARN Helicasas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/química , Transcripción Genética
5.
Nucleic Acids Res ; 48(8): 4507-4520, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170306

RESUMEN

The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5' and 3' untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ's interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ's NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Escherichia coli/genética , Técnicas Genéticas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA