Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4494, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802368

RESUMEN

Efflux pump antiporters confer drug resistance to bacteria by coupling proton import with the expulsion of antibiotics from the cytoplasm. Despite efforts there remains a lack of understanding as to how acid/base chemistry drives drug efflux. Here, we uncover the proton-coupling mechanism of the Staphylococcus aureus efflux pump NorA by elucidating structures in various protonation states of two essential acidic residues using cryo-EM. Protonation of Glu222 and Asp307 within the C-terminal domain stabilized the inward-occluded conformation by forming hydrogen bonds between the acidic residues and a single helix within the N-terminal domain responsible for occluding the substrate binding pocket. Remarkably, deprotonation of both Glu222 and Asp307 is needed to release interdomain tethering interactions, leading to opening of the pocket for antibiotic entry. Hence, the two acidic residues serve as a "belt and suspenders" protection mechanism to prevent simultaneous binding of protons and drug that enforce NorA coupling stoichiometry and confer antibiotic resistance.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Protones , Staphylococcus aureus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Staphylococcus aureus/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/química , Modelos Moleculares , Transporte Biológico , Sitios de Unión , Enlace de Hidrógeno , Conformación Proteica
2.
Nat Commun ; 13(1): 2644, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551191

RESUMEN

The Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) is a prototype for the divalent anion sodium symporter (DASS) family. While the utilization of an electrochemical Na+ gradient to power substrate transport is well established for VcINDY, the structural basis of this coupling between sodium and substrate binding is not currently understood. Here, using a combination of cryo-EM structure determination, succinate binding and site-directed cysteine alkylation assays, we demonstrate that the VcINDY protein couples sodium- and substrate-binding via a previously unseen cooperative mechanism by conformational selection. In the absence of sodium, substrate binding is abolished, with the succinate binding regions exhibiting increased flexibility, including HPinb, TM10b and the substrate clamshell motifs. Upon sodium binding, these regions become structurally ordered and create a proper binding site for the substrate. Taken together, these results provide strong evidence that VcINDY's conformational selection mechanism is a result of the sodium-dependent formation of the substrate binding site.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos , Vibrio cholerae , Sitios de Unión , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Sodio/metabolismo , Ácido Succínico/metabolismo , Vibrio cholerae/metabolismo
3.
Nat Chem Biol ; 18(7): 706-712, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35361990

RESUMEN

Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Staphylococcus aureus/metabolismo
4.
FEBS J ; 289(6): 1515-1523, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34403567

RESUMEN

The divalent anion sodium symporter (DASS) family contains both sodium-driven anion cotransporters and anion/anion exchangers. The family belongs to a broader ion transporter superfamily (ITS), which comprises 24 families of transporters, including those of AbgT antibiotic efflux transporters. The human proteins in the DASS family play major physiological roles and are drug targets. We recently determined multiple structures of the human sodium-dependent citrate transporter (NaCT) and the succinate/dicarboxylate transporter from Lactobacillus acidophilus (LaINDY). Structures of both proteins show high degrees of structural similarity to the previously determined VcINDY fold. Conservation between these DASS protein structures and those from the AbgT family indicates that the VcINDY fold represents the overall protein structure for the entire ITS. The new structures of NaCT and LaINDY are captured in the inward- or outward-facing conformations, respectively. The domain arrangements in these structures agree with a rigid body elevator-type transport mechanism for substrate translocation across the membrane. Two separate NaCT structures in complex with a substrate or an inhibitor allowed us to explain the inhibition mechanism and propose a detailed classification scheme for grouping disease-causing mutations in the human protein. Structural understanding of multiple kinetic states of DASS proteins is a first step toward the detailed characterization of their entire transport cycle.


Asunto(s)
Proteínas de Transporte de Membrana , Simportadores , Aniones/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Sodio/metabolismo , Simportadores/metabolismo
5.
Nature ; 591(7848): 157-161, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597751

RESUMEN

Citrate is best known as an intermediate in the tricarboxylic acid cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis1-3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic concentration of citrate4,5. Liver cells import citrate through the sodium-dependent citrate transporter NaCT (encoded by SLC13A5) and, as a consequence, this protein is a potential target for anti-obesity drugs. Here, to understand the structural basis of its inhibition mechanism, we determined cryo-electron microscopy structures of human NaCT in complexes with citrate or a small-molecule inhibitor. These structures reveal how the inhibitor-which binds to the same site as citrate-arrests the transport cycle of NaCT. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish the transport activity of NaCT in the brain and thereby cause epilepsy associated with mutations in SLC13A5 in newborns (which is known as SLC13A5-epilepsy)6-8.


Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Ácido Cítrico/metabolismo , Microscopía por Crioelectrón , Malatos/farmacología , Fenilbutiratos/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/química , Sitios de Unión , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Ácido Cítrico/química , Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Malatos/química , Modelos Moleculares , Mutación , Fenilbutiratos/química , Multimerización de Proteína , Sodio/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética , Simportadores/genética , Simportadores/ultraestructura
6.
Elife ; 92020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32869741

RESUMEN

Citrate, α-ketoglutarate and succinate are TCA cycle intermediates that also play essential roles in metabolic signaling and cellular regulation. These di- and tricarboxylates are imported into the cell by the divalent anion sodium symporter (DASS) family of plasma membrane transporters, which contains both cotransporters and exchangers. While DASS proteins transport substrates via an elevator mechanism, to date structures are only available for a single DASS cotransporter protein in a substrate-bound, inward-facing state. We report multiple cryo-EM and X-ray structures in four different states, including three hitherto unseen states, along with molecular dynamics simulations, of both a cotransporter and an exchanger. Comparison of these outward- and inward-facing structures reveal how the transport domain translates and rotates within the framework of the scaffold domain through the transport cycle. Additionally, we propose that DASS transporters ensure substrate coupling by a charge-compensation mechanism, and by structural changes upon substrate release.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Lactobacillus acidophilus/metabolismo , Simulación de Dinámica Molecular
7.
Bioinformatics ; 35(18): 3224-3231, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30689741

RESUMEN

MOTIVATION: Optimal growth temperature is a fundamental characteristic of all living organisms. Knowledge of this temperature is central to the study of a prokaryote, the thermal stability and temperature dependent activity of its genes, and the bioprospecting of its genome for thermally adapted proteins. While high throughput sequencing methods have dramatically increased the availability of genomic information, the growth temperatures of the source organisms are often unknown. This limits the study and technological application of these species and their genomes. Here, we present a novel method for the prediction of growth temperatures of prokaryotes using only genomic sequences. RESULTS: By applying the reverse ecology principle that an organism's genome includes identifiable adaptations to its native environment, we can predict a species' optimal growth temperature with an accuracy of 5.17°C root-mean-square error and a coefficient of determination of 0.835. The accuracy can be further improved for specific taxonomic clades or by excluding psychrophiles. This method provides a valuable tool for the rapid calculation of organism growth temperature when only the genome sequence is known. AVAILABILITY AND IMPLEMENTATION: Source code, genomes analyzed and features calculated are available at: https://github.com/DavidBSauer/OGT_prediction. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Temperatura , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Programas Informáticos
9.
Biochemistry ; 55(48): 6673-6684, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27792302

RESUMEN

STEAP1, six-transmembrane epithelial antigen of prostate member 1, is strongly expressed in several types of cancer cells, particularly in prostate cancer, and inhibition of its expression reduces the rate of tumor cell proliferation. However, the physiological function of STEAP1 remains unknown. Here for the first time, we purified a mammalian (rabbit) STEAP1 at a milligram level, permitting its high-quality biochemical and biophysical characterizations. We found that STEAP1 likely assembles as a homotrimer and forms a heterotrimer when co-expressed with STEAP2. Each STEAP1 protomer binds one heme prosthetic group that is mainly low-spin with a pair of histidine axial ligands, with small portions of high-spin and P450-type heme. In its ferrous state, STEAP1 is capable of reducing transition metal ion complexes of Fe3+ and Cu2+. Ferrous STEAP1 also reacts readily with O2 through an outer sphere redox mechanism. Kinetics with all three substrates are biphasic with ∼80 and ∼20% for the fast and slow phases, respectively, in line with its heme heterogeneity. STEAP1 retained a low level of bound FAD during purification, and the binding equilibrium constant, KD, was ∼30 µM. These results highlight STEAP as a novel metal reductase and superoxide synthase and establish a solid basis for further research into understanding how STEAP1 activities may affect cancer progression.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Complejos de Coordinación/metabolismo , Hemo/metabolismo , Metales/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Algoritmos , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Fenómenos Bioquímicos , Fenómenos Biofísicos , Línea Celular , Dicroismo Circular , Complejos de Coordinación/química , Cobre/química , Cobre/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hemo/química , Humanos , Hierro/química , Hierro/metabolismo , Cinética , Metales/química , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Oxígeno/química , Unión Proteica , Multimerización de Proteína , Conejos
10.
J Mol Biol ; 428(15): 3118-30, 2016 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-27312125

RESUMEN

ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.


Asunto(s)
Sitios de Unión/fisiología , Proteínas de Transporte de Membrana/metabolismo , Subunidades de Proteína/metabolismo , Riboflavina/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X/métodos , Modelos Moleculares , Conformación Proteica , Thermotoga maritima/metabolismo , Vitaminas/metabolismo
11.
Biophys J ; 109(7): 1420-8, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26445442

RESUMEN

Ex vivo stability is a valuable protein characteristic but is laborious to improve experimentally. In addition to biopharmaceutical and industrial applications, stable protein is important for biochemical and structural studies. Taking advantage of the large number of available genomic sequences and growth temperature data, we present two bioinformatic methods to identify a limited set of amino acids or positions that likely underlie thermostability. Because these methods allow thousands of homologs to be examined in silico, they have the advantage of providing both speed and statistical power. Using these methods, we introduced, via mutation, amino acids from thermoadapted homologs into an exemplar mesophilic membrane protein, and demonstrated significantly increased thermostability while preserving protein activity.


Asunto(s)
Biología Computacional/métodos , Mutación , Estabilidad Proteica , Temperatura , Aminoácidos/química , Aminoácidos/genética , Antibacterianos/farmacología , Antiportadores/química , Antiportadores/genética , Bacillus subtilis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Tetraciclina/farmacología , Transfección
12.
Nat Struct Mol Biol ; 22(7): 565-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26052893

RESUMEN

ECF transporters are a family of active transporters for vitamins. They are composed of four subunits: a membrane-embedded substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT) and two ATP-binding-cassette ATPases (EcfA and EcfA'). We have investigated the mechanism of the ECF transporter for riboflavin from the pathogen Listeria monocytogenes, LmECF-RibU. Using structural and biochemical approaches, we found that ATP binding to the EcfAA' ATPases drives a conformational change that dissociates the S subunit from the EcfAA'T ECF module. Upon release from the ECF module, the RibU S subunit then binds the riboflavin transport substrate. We also find that S subunits for distinct substrates compete for the ATP-bound state of the ECF module. Our results explain how ECF transporters capture the transport substrate and reproduce the in vivo observations on S-subunit competition for which the family was named.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Listeria monocytogenes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Riboflavina/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Humanos , Listeria monocytogenes/química , Listeriosis/microbiología , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
13.
J Gen Physiol ; 143(6): 745-59, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821967

RESUMEN

The SLC13 transporter family, whose members play key physiological roles in the regulation of fatty acid synthesis, adiposity, insulin resistance, and other processes, catalyzes the transport of Krebs cycle intermediates and sulfate across the plasma membrane of mammalian cells. SLC13 transporters are part of the divalent anion:Na(+) symporter (DASS) family that includes several well-characterized bacterial members. Despite sharing significant sequence similarity, the functional characteristics of DASS family members differ with regard to their substrate and coupling ion dependence. The publication of a high resolution structure of dimer VcINDY, a bacterial DASS family member, provides crucial structural insight into this transporter family. However, marrying this structural insight to the current functional understanding of this family also demands a comprehensive analysis of the transporter's functional properties. To this end, we purified VcINDY, reconstituted it into liposomes, and determined its basic functional characteristics. Our data demonstrate that VcINDY is a high affinity, Na(+)-dependent transporter with a preference for C4- and C5-dicarboxylates. Transport of the model substrate, succinate, is highly pH dependent, consistent with VcINDY strongly preferring the substrate's dianionic form. VcINDY transport is electrogenic with succinate coupled to the transport of three or more Na(+) ions. In contrast to succinate, citrate, bound in the VcINDY crystal structure (in an inward-facing conformation), seems to interact only weakly with the transporter in vitro. These transport properties together provide a functional framework for future experimental and computational examinations of the VcINDY transport mechanism.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/química , Liposomas/química , Sodio/química , Ácido Succínico/química , Vibrio cholerae/química
14.
Science ; 342(6163): 1169, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24311662
15.
Curr Opin Struct Biol ; 23(4): 499-506, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23773802

RESUMEN

The phospholipid bilayer has evolved to be a protective and selective barrier by which the cell maintains high concentrations of life sustaining organic and inorganic material. As gatekeepers responsible for an immense amount of bidirectional chemical traffic between the cytoplasm and extracellular milieu, ion channels have been studied in detail since their postulated existence nearly three-quarters of a century ago. Over the past fifteen years, we have begun to understand how selective permeability can be achieved for both cationic and anionic ions. Our mechanistic knowledge has expanded recently with studies of a large family of anion channels, the Formate Nitrite Transport (FNT) family. This family has proven amenable to structural studies at a resolution high enough to reveal intimate details of ion selectivity and gating. With five representative members having yielded a total of 15 crystal structures, this family represents one of the richest sources of structural information for anion channels.


Asunto(s)
Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/ultraestructura , Proteínas de Transporte de Anión/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Formiatos/metabolismo , Activación del Canal Iónico , Bombas Iónicas/metabolismo , Fosfolípidos/metabolismo , Conformación Proteica
16.
Biophys J ; 104(2): 287-91, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23442850

RESUMEN

Benjamin Franklin, mostly known for his participation in writing The Declaration of Independence and work on electricity, was also one of the first scientists to seek to understand the properties of oil monolayers on water surfaces. During one of his many voyages across the Atlantic Ocean, Franklin observed that oil had a calming effect on waves when poured into rough ocean waters. Though at first taking a backseat to many of his other scientific and political endeavors, Franklin went on to experiment with oil, spreading monomolecular films on various bodies of water, and ultimately devised a concept of particle repulsion that is indirectly related to the hydrophobic effect. His early observations inspired others to measure the dimensions of oil monolayers, which eventually led to the formulation of the contemporary lipid bilayer model of the cell membrane.


Asunto(s)
Biofisica/historia , Membrana Celular/metabolismo , Personajes , Historia del Siglo XVIII , Membrana Dobles de Lípidos/metabolismo , Philadelphia
17.
Proc Natl Acad Sci U S A ; 110(7): 2534-9, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23359690

RESUMEN

Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Streptococcus thermophilus , Thermotoga maritima , Secuencia de Aminoácidos , Transporte Biológico Activo/fisiología , Cristalografía , Dimerización , Humanos , Datos de Secuencia Molecular , Vitaminas/metabolismo
18.
Nature ; 491(7425): 622-6, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23086149

RESUMEN

In human cells, cytosolic citrate is a chief precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. Cytosolic citrate further regulates the energy balance of the cell by activating the fatty-acid-synthesis pathway while downregulating both the glycolysis and fatty-acid ß-oxidation pathways. The rate of fatty-acid synthesis in liver and adipose cells, the two main tissue types for such synthesis, correlates directly with the concentration of citrate in the cytosol, with the cytosolic citrate concentration partially depending on direct import across the plasma membrane through the Na(+)-dependent citrate transporter (NaCT). Mutations of the homologous fly gene (Indy; I'm not dead yet) result in reduced fat storage through calorie restriction. More recently, Nact (also known as Slc13a5)-knockout mice have been found to have increased hepatic mitochondrial biogenesis, higher lipid oxidation and energy expenditure, and reduced lipogenesis, which taken together protect the mice from obesity and insulin resistance. To understand the transport mechanism of NaCT and INDY proteins, here we report the 3.2 Å crystal structure of a bacterial INDY homologue. One citrate molecule and one sodium ion are bound per protein, and their binding sites are defined by conserved amino acid motifs, forming the structural basis for understanding the specificity of the transporter. Comparison of the structures of the two symmetrical halves of the transporter suggests conformational changes that propel substrate translocation.


Asunto(s)
Transportadores de Ácidos Dicarboxílicos/química , Transportadores de Ácidos Dicarboxílicos/metabolismo , Vibrio cholerae/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Cristalografía por Rayos X , Transporte Iónico , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Sodio/química , Sodio/metabolismo , Homología Estructural de Proteína , Relación Estructura-Actividad
19.
Nature ; 483(7390): 494-7, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22407320

RESUMEN

The hydrosulphide ion (HS(-)) and its undissociated form, hydrogen sulphide (H(2)S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H(2)S (ref. 4). The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD(+), which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H(2)S and HS(-) inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS(-) channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS(-) ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.


Asunto(s)
Clostridioides difficile , Canales Iónicos/aislamiento & purificación , Canales Iónicos/metabolismo , Sulfuros/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Clostridioides difficile/química , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/genética , Cristalografía por Rayos X , Formiatos/metabolismo , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/genética , Transporte Iónico , Modelos Biológicos , Modelos Moleculares , Nitritos/metabolismo , Operón/genética , Proteolípidos/metabolismo , Fuerza Protón-Motriz , Relación Estructura-Actividad , Especificidad por Sustrato , Sulfuros/toxicidad
20.
Methods ; 55(4): 324-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21840396

RESUMEN

Biochemical and biophysical analysis on integral membrane proteins often requires monodisperse and stable protein samples. Here we describe a method to characterize protein thermostability by measuring its melting temperature in detergent using analytical size-exclusion chromatography. This quantitative method can be used to screen for compounds and conditions that stabilize the protein. With this technique we were able to assess and improve the thermostability of several membrane proteins. These conditions were in turn used to assist purification, to identify protein ligand and to improve crystal quality.


Asunto(s)
Proteínas de Transporte de Anión/química , Fosfatidato Fosfatasa/química , Proteínas de Transporte de Anión/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Glucósidos/química , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Fosfatidato Fosfatasa/aislamiento & purificación , Estabilidad Proteica , Solubilidad , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...