Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(7): e11722, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994211

RESUMEN

In recent decades, hypoxic areas have rapidly expanded worldwide in estuaries and coastal zones. The Pearl River Estuary (PRE), one of China's largest estuaries, experiences frequent seasonal hypoxia due to intense human activities and eutrophication. However, the ecological effects of hypoxia in the PRE, particularly on fish communities, remain unclear. To explore these effects, we collected fish community and environmental data in July 2021 during the summer hypoxia development period. The results revealed that bottom-layer dissolved oxygen (DO) in the PRE ranged from 0.08 to 5.71 mg/L, with extensive hypoxic zones (DO ≤ 2 mg/L) observed. Hypoxia has varied effects on fish community composition, distribution, species, and functional diversity in the PRE. A total of 104 fish species were collected in this study, with approximately 30 species (28.6%) exclusively found in hypoxic areas. Species responses to hypoxia varied: species such as Sardinella zunasi, Coilia mystus, and Nuchequula nuchalis were sensitive, while Decapterus maruadsi, Siganus fuscescens, and Lagocephalus spadiceus showed higher tolerance. Within the hypoxia area, dissolved oxygen was the main limiting factor for fish community diversity. Functional diversity (FDiv) decreased with higher dissolved oxygen levels, indicating a potential shift in the functional traits and ecological roles of fish species in response to changing oxygen conditions. Further analysis demonstrated that dissolved oxygen had a significantly stronger effect on fish community structure at hypoxic sites than in the whole PRE. Moreover, other environmental variables also had significant effects on the fish community structure and interacted with dissolved oxygen in the hypoxia area. These findings suggest that maintaining sufficient dissolved oxygen levels is essential for sustaining fish communities and ecosystem health in the PRE. This study provides novel insights into the effects of hypoxia on fish communities in estuarine ecosystems and has significant implications for the ecological health and management of the PRE.

2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38747389

RESUMEN

Spillovers of viruses from animals to humans occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis, the Asian longhorned tick, poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China encompassing diverse ecological conditions. Generalized additive modeling revealed that climate factors exerted a stronger influence on the virome of H. longicornis than other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and antiviral immunity. To understand how climate changes drive the tick virome, we performed a mechanistic investigation using causality inference with emphasis on the significance of this process for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to increased diversity of the tick virome, particularly the evenness of vertebrate-associated viruses. These findings may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections have indicated that the diversity of the H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019 to 2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.


Asunto(s)
Especies Introducidas , Viroma , Animales , China , Ixodidae/virología , Femenino , Cambio Climático , Masculino , Clima
3.
Ecol Evol ; 12(7): e9053, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813915

RESUMEN

Species differentiation and local adaptation in heterogeneous environments have attracted much attention, although little is known about the mechanisms involved. Hyporhamphus intermedius is an anadromous, brackish-water halfbeak that is widely distributed in coastal areas and hyperdiverse freshwater systems in China, making it an interesting model for research on phylogeography and local adaptation. Here, 156 individuals were sampled at eight sites from heterogeneous aquatic habitats to examine environmental and genetic contributions to phenotypic divergence. Using double-digest restriction-site-associated DNA sequencing (ddRAD-Seq) in the specimens from the different watersheds, 5498 single nucleotide polymorphisms (SNPs) were found among populations, with obvious population differentiation. We find that present-day Mainland China populations are structured into distinct genetic clusters stretching from southern and northern ancestries, mirroring geography. Following a transplant event in Plateau Lakes, there were virtually no variations of genetic diversity occurred in two populations, despite the fact two main splits were unveiled in the demographic history. Additionally, dorsal, and anal fin traits varied widely between the southern group and the others, which highlighted previously unrecognized lineages. We then explore genotype-phenotype-environment associations and predict candidate loci. Subgroup ranges appeared to correspond to geographic regions with heterogeneous hydrological factors, indicating that these features are likely important drivers of diversification. Accordingly, we conclude that genetic and phenotypic polymorphism and a moderate amount of genetic differentiation occurred, which might be ascribed to population subdivision, and the impact of abiotic factors.

4.
Front Med (Lausanne) ; 9: 861371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492354

RESUMEN

Retinitis pigmentosa (RP), characterized by the gradual loss of rod and cone photoreceptors that eventually leads to blindness, is the most common inherited retinal disorder, affecting more than 2.5 million people worldwide. However, the underlying pathogenesis of RP remains unclear and there is no effective cure for RP. Mutations in the Mer receptor tyrosine kinase (MERTK) gene induce the phagocytic dysfunction of retinal pigment epithelium (RPE) cells, leading to RP. Studies have indicated that filamentous actin (F-actin)-which is regulated by chaperonin-containing TCP1 subunit 5 (CCT5)-plays a vital role in phagocytosis in RPE cells. However, whether CCT5/F-actin signaling is involved in MERTK-associated RP remains largely unknown. In the present study, we specifically knocked down MERTK and CCT5 through siRNA transfection and examined the expression of CCT5 and F-actin in human primary RPE (HsRPE) cells. We found that MERTK downregulation inhibited cell proliferation, migration, and phagocytic function; significantly decreased the expression of F-actin; and disrupted the regular arrangement of F-actin. Importantly, our findings firstly indicate that CCT5 interacts with F-actin and is inhibited by MERTK siRNA in HsRPE cells. Upregulating CCT5 using CCT5-specific lentiviral vectors (CCT5-Le) rescued the cell proliferation, migration, and phagocytic function of HsRPE cells under the MERTK knockdown condition by increasing the expression of F-actin and restoring its regular arrangement via the LIMK1/cofilin, but not the SSH1/cofilin, pathway. In conclusion, CCT5 protects against the effect of MERTK knockdown in HsRPE cells and demonstrates the potential for effective treatment of MERTK-associated RP.

5.
BMC Ecol Evol ; 22(1): 10, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114951

RESUMEN

BACKGROUND: Artificial fishery habitat has been widely used in fishery resource protection and water habitat restoration. Although the bacterioplankton plays an important ecological role in fisheries ecosystems, the effect of artificial fishery habitat on bacterioplankton is not clear. In this study, high-throughput sequencing based on the 16S rRNA gene was carried out to study the characteristics of bacterioplankton community structure in artificial fishery habitat and to determine the principal environmental factors that shaped the composition, structure and function of bacterioplankton communities in an unfed aquaculture system. RESULTS: The results indicated that the most dominant phyla were Proteobacteria (Alphaproteobacteria and Gammaproteobacteria), Actinobacteria, Cyanobacteria, and Bacteroidetes, which accounted for 28.61%, 28.37%, 19.79%, and 10.25% of the total abundance, respectively. The factors that cause the differences in bacterioplankton community were mainly manifested in three aspects, including the diversity of the community, the role of artificial fishery habitat, and the change of environmental factors. The alpha diversity analysis showed that the diversity and richness index of the bacterioplankton communities were the highest in summer, which indicated that the seasonal variation characteristics had a great influence on it. The CCA analysis identified that the dissolved oxygen, temperature, and ammonium salt were the dominant environmental factors in an unfed aquaculture system. The LEfSe analysis founded 37 indicator species in artificial structure areas (AS group), only 9 kinds existing in the control areas of the open-water group (CW group). Meanwhile, the KEGG function prediction analysis showed that the genes which were related to metabolism in group AS were significantly enhanced. CONCLUSIONS: This study can provide reference value for the effect of artificial habitat on bacterioplankton community and provide fundamental information for the follow-up study of ecological benefits of artificial fishery habitat. It may be contributed to apply artificial fishery habitat in more rivers.


Asunto(s)
Cianobacterias , Ríos , Organismos Acuáticos , Cianobacterias/genética , Ecosistema , Explotaciones Pesqueras , Estudios de Seguimiento , ARN Ribosómico 16S/genética , Ríos/química , Agua
6.
Microorganisms ; 9(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34683446

RESUMEN

Artificial fishery habitats have been extensively used for fishery resource protection and water habitat restoration, and they could attract a large number of omnivorous fishes to gather together. This study intended to reveal the relationship between bacterial communities in the habitats (water and sediment) and intestines of omnivorous fishes (Oreochromis mossambicus, Toxabramis houdemeri and Hemiculter leucisculus). Therefore, we investigated the bacterial communities of samples collected from intestines, water, and sediments in artificial fishery habitats via 16S rRNA metabarcoding high-throughput sequencing technology. The results showed that there were significant differences in the composition, core indicators, diversity and prediction functions in water, sediments, and intestinal microbial communities of the three omnivorous fish. The microbial diversities were significantly higher in habitats than in intestines. The analysis of similarity (ANOSIM) and nonmetric multidimensional scaling (NMDS) results indicated that the intestine microbial communities (T. houdemeri and H. leucisculus) were more similar to the water microbiota, but the intestine microbial communities (O. mossambicus) were more similar to the sediments. Source tracking analysis also confirmed that the contribution of habitat characteristics to omnivorous fish intestinal microorganisms was different; the sediment had a greater contribution than water to the intestinal microbiota of O. mossambicus, which was consistent with their benthic habit. Moreover, the functional prediction results showed that there were unique core indicators and functions between the bacterial community of habitats and intestines. Altogether, these results can enhance our understanding of the bacterial composition and functions about omnivorous fish intestines and their living with habitats, which have provided new information for the ecological benefits of artificial fishery habitats from the perspective of bacterial ecology and contributed to apply artificial fishery habitats in more rivers.

7.
Ecol Evol ; 10(23): 13439-13450, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304550

RESUMEN

The fragmentation and homogenization of habitats have seriously affected the fishery resources of the Pearl River. To protect the fishery resources, a novel artificial habitat, constructed using bamboo and palm slices, was deployed in the Youjiang River, a tributary of the Pearl River in China. The results of field and laboratory experiments showed that fish abundance, species richness and Shannon-Wiener diversity index were higher in the artificial habitats than at the control sites. There was no significant impact on fish biomass, as the artificial habitats attracted more Cultrinae and Gobioninae fish that are of a smaller size. Artificial habitats can serve as spawning grounds for fish that produce sticky eggs and refuges that improve the survival rates of juvenile fishes. This study revealed that this novel artificial habitat created suitable habitats and suitable spawning substrate for fish, improved fish richness and diversity in the structureless freshwater ecosystem like the Youjiang River.

8.
Front Physiol ; 11: 553563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117188

RESUMEN

How organisms display many different biochemical, physiological processes through genes expression and regulatory mechanisms affecting muscle growth is a central issue in growth and development. In Siniperca chuatsi, the growth-related genes and underlying relevant mechanisms are poorly understood, especially for difference of body sizes and compensatory growth performance. Muscle from 3-month old individuals of different sizes was used for transcriptome analysis. Results showed that 8,942 different expression genes (DEGs) were identified after calculating the RPKM. The DEGs involved in GH-IGF pathways, protein synthesis, ribosome synthesis and energy metabolisms, which were expressed significantly higher in small individuals (S) than large fish (L). In repletion feeding and compensatory growth experiments, eight more significant DEGs were used for further research (GHR2, IGFR1, 4ebp, Mhc, Mlc, Myf6, MyoD, troponin). When food was plentiful, eight genes participated in and promoted growth and muscle synthesis, respectively. Starvation can be shown to inhibit the expression of Mhc, Mlc and troponin, and high expression of GHR2, IGFR1, and 4ebp inhibited growth. Fasting promoted the metabolic actions of GHR2, IGFR1, and 4ebp rather than the growth-promoting actions. MyoD can sense and regulate the hunger, which also worked with Mhc and Mlc to accelerate the compensatory growth of S. chuatsi. This study is helpful to understand the regulation mechanisms of muscle growth-related genes. The elected genes will contribute to the selective breeding in future as candidate genes.

9.
Theriogenology ; 133: 22-28, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31055158

RESUMEN

This works studies the physiological characteristics (sperm motility characteristics) and biochemical characteristics (DNA damage, enzymes activities and fertilization ability) of fresh and freeze-thawed semen of sex-reversed female mandarin fish Siniperca chuatsi (n = 30) obtained with the application of 17α-methyl testosterone for sex reversal. The fresh sperm motility and fertilization rate of sex-reversed females were about 83% and 70% respectively which had no significant difference with normal males (p > 0.05). Except for the value of DNA damage, other values of sperm motility, related enzymes activities and fertilization rate of sex-reversed female sperm declined after a process of cryopreservation (p < 0.05). But the frozen sperm can still get nearly 60% of the fertilization rate. This study identified the physiological and biochemical characteristics of the fresh and cryopreserved sperm from sex-reversed female mandarin fish, and the sex-reversed female spermatozoa can be used for actual production.


Asunto(s)
Criopreservación/veterinaria , Perciformes/fisiología , Preservación de Semen/veterinaria , Animales , Daño del ADN , Fertilidad , Análisis de Semen/veterinaria , Desarrollo Sexual , Motilidad Espermática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...